CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ascaad2021_113
id ascaad2021_113
authors Gün, Ahmet; Burak Pak, Yüksel Demir
year 2021
title Technology-Driven Participatory Spatial Design in a Developing World Context: The Case of Istanbul
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 551-567
summary Nowadays, ICT-based participatory design methods, techniques and tools are increasingly used across the globe. A majority of these are employed in high-income “developed” countries with advanced democratic systems which aim at including citizens; desires, needs, proposals as valuable input in city-making processes. In contrast, in the Global South, only a limited number of ICT-based practices aim to empower the citizens in urban design and planning at higher instances. There is a need for deeper research into how citizens can be involved in urban design in developing countries like Turkey situated in between the Global North and the South. In this context, this research will focus on Istanbul, Turkey as a key case. Different than the developed world context, enabling ICT-based participation in Turkey has a wide range of challenges. Among those are the lack of open and governmental data and transparency, the unwillingness of the policymakers to promote and employ participatory design, top-down approaches are the other weak points of these countries. Responding to these challenges, the aims of this study are: 1) to critically address the weaknesses and requirements of existing urban development practices in developing countries with a focus on Turkey, Istanbul and 2) to discuss the possible potentials of ICT-based participation tools and techniques to involve citizens in city-making processes.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_146
id ascaad2021_146
authors Aly, Zeyad; Aly Ibrahim, Sherif Abdelmohsen
year 2021
title Augmenting Passive Actuation of Hygromorphic Skins in Desert Climates: Learning from Thorny Devil Lizard Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 264-278
summary The exploitation of latent properties of natural materials such as wood in the passive actuation of adaptive building skins is of growing interest due to their added value as a low-cost and low-energy approach. The control of wood response behavior is typically conducted via physical experiments and numerical simulations that explore the impact of hygroscopic design parameters. Desert climates however suffer from water scarcity and high temperatures. Complementary mechanisms are needed to provide sufficient sources of water for effective hygroscopic operation. This paper aims to exploit such mechanisms, with specific focus on thorny devil lizard skins whose microstructure surface properties allow for maximum humidity absorption. We put forward that this process enhances hygroscopic-based passive actuation systems and their adaptation to both humidity and temperature in desert climates. Specific parameters and rules are deduced based on the lizard skin properties. Physical experiments are conducted to observe different actuation mechanisms. These mechanisms are recorded, and texture and bending morphologies are modeled for adaptive skins using Grasshopper.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2021_263
id ecaade2021_263
authors Azadi, Shervin and Nourian, Pirouz
year 2021
title GoDesign - A modular generative design framework for mass-customization and optimization in architectural design
doi https://doi.org/10.52842/conf.ecaade.2021.1.285
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 285-294
summary We present a modular generative design framework for design processes in the built environment that provides for the unification of participatory design and optimization to achieve mass-customization and evidence-based design. The paper articulates this framework mathematically as three meta procedures framing the typical design problems as multi-dimensional, multi-criteria, multi-actor, and multi-value decision-making problems: 1) space-planning, 2) configuring, and 3) shaping; structured as to the abstraction hierarchy of the chain of decisions in design processes. These formulations allow for applying various problem-solving approaches ranging from mathematical derivation & artificial intelligence to gamified play & score mechanisms and grammatical exploration. The paper presents a general schema of the framework; elaborates on the mathematical formulation of its meta procedures; presents a spectrum of approaches for navigating solution spaces; discusses the specifics of spatial simulations for ex-ante evaluation of design alternatives. The ultimate contribution of this paper is laying the foundation of comprehensive Spatial Decision Support Systems (SDSS) for built environment design processes.
keywords Generative Design; Spatial Configuration; Serious Gaming; Mass Customization; Decision Problems
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_074
id ascaad2021_074
authors Belkaid, Alia; Abdelkader Ben Saci, Ines Hassoumi
year 2021
title Human-Computer Interaction for Urban Rules Optimization
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 603-613
summary Faced with the complexity of manual and intuitive management of urban rules in architectural and urban design, this paper offers a collaborative and digital human-computer approach. It aims to have an Authorized Bounding Volume (ABV) which uses the best target values of urban rules. It is a distributed constraint optimization problem. The ABV Generative Model uses multi-agent systems. It offers an intelligent system of urban morphology able to transform the urban rules, on a given plot, into a morphological delimitation permitted by the planning regulations of a city. The overall functioning of this system is based on two approaches: construction and supervision. The first is conducted entirely by the machine and the second requires the intervention of the designer to collaborate with the machine. The morphological translation of urban rules is sometimes contradictory and may require additional external relevance to urban rules. Designer arbitration assists the artificial intelligence in accomplishing this task and solving the problem. The Human-Computer collaboration is achieved at the appropriate time and relies on the degree of constraint satisfaction with fitness function. The resolution of the distributed constraint optimization problem is not limited to an automatic generation of urban rules, but involves also the production of multiple optimal-ABV conditioned both by urban constraints as well as relevance, chosen by the designer.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_108
id ascaad2021_108
authors Elbaz, Noran; Mohamed Ezzeldin
year 2021
title Phenomenological BIM Design Evaluation of Indoor Spatial Configurations
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 371-383
summary The studies of evaluating spaces’ different spatial configurations mostly cover the physical dimensions; especially when using digital platforms such as BIM. The gap between the physical dimension of abstract spaces, and the metaphorical senses of these places, has always been a missing layer when testing the quality of space. The current BIM tools – as a digital platform – are mostly based only on physical dimensions of spaces, where the phenomenological approach is not considered as one of the layers or attributes when evaluating the spatial configurations of indoor spaces. This missing layer of the user perceptual experience leads to incomprehensive results of spatial design evaluation. This paper aims to identify the gap between the qualitative and quantitative studies of space configurations and the experiential dimension of indoor spaces in order to increase the accuracy of design evaluation by filling the missing gaps through adding; to the spatial configurations of physical ‘Space’ another dimensions and attributes that are related to senses of ‘Place,’ highlighting the need of creating a SIM, “Sensory Information Modeling,” a digital platform for Places integrated with BIM for Spaces.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_251
id caadria2021_251
authors Ma, Chun Yu and van Ameijde, Jeroen
year 2021
title Participatory Housing: Discrete Design and Construction Systems for High-Rise Housing in Hong Kong
doi https://doi.org/10.52842/conf.caadria.2021.1.271
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 271-280
summary There has been a recent increase in the exploration of mereological systems, speculating on how digital design, assembly and reconfiguration of digital materials (Gershenfeld, 2015) enables digitally informed physical worlds that change over time. Besides opportunities for construction and design automation, there is a potential to reimagine how multiple stakeholders can participate in the computational decision-making process, using the benefits of the mass customization of logistics (Retsin, 2019). This paper presents a research-by-design project that applies a digital and discrete material system to high-rise housing in Hong Kong. The project has developed an integrated approach to design, construction, and inhabitation, using a system of discrete parts which can be assembled in various apartment configurations, to incorporate varying occupants requirements and facilitate negotiations and changes over time.
keywords Participatory Design; Generative Design; Adaptable Architecture; High-rise Housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id ascaad2021_127
id ascaad2021_127
authors Poustinchi, Ebrahim
year 2021
title A Grasshopper Plug-In for Designing Virtual Camera Path in Rhino 3D using Cellphone Motion: Chameleon
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 636-644
summary Chameleon is a workflow plug-in for Grasshopper 3D that enables designers/users to design camera paths and orientation for animation and still rendering, using cellphone position and orientation. Working as a bridge between the physical world and the digital design environment of Rhino 3D, users using Chameleons, can develop animated and still frames from the first-person point of view with realistic walk-through motions/angles. Although this feature is available in animation software platforms, Chameleon aims to unlock this possibility in Rhino 3D environment and the most used design software for three-dimensional modeling. This new workflow also provokes new means and methods for creative interaction with design software, beyond the existing hardware interfaces such as keyboard and mouse.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia21_76
id acadia21_76
authors Smith, Rebecca
year 2021
title Passive Listening and Evidence Collection
doi https://doi.org/10.52842/conf.acadia.2021.076
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 76-81.
summary In this paper, I present the commercial, urban-scale gunshot detection system ShotSpotter in contrast with a range of ecological sensing examples which monitor animal vocalizations. Gunshot detection sensors are used to alert law enforcement that a gunshot has occurred and to collect evidence. They are intertwined with processes of criminalization, in which the individual, rather than the collective, is targeted for punishment. Ecological sensors are used as a “passive” practice of information gathering which seeks to understand the health of a given ecosystem through monitoring population demographics, and to document the collective harms of anthropogenic change (Stowell and Sueur 2020). In both examples, the ability of sensing infrastructures to “join up and speed up” (Gabrys 2019, 1) is increasing with the use of machine learning to identify patterns and objects: a new form of expertise through which the differential agendas of these systems are implemented and made visible. I trace the differential agendas of these systems as they manifest through varied components: the spatial distribution of hardware in the existing urban environment and / or landscape; the software and other informational processes that organize and translate the data; the visualization of acoustical sensing data; the commercial factors surrounding the production of material components; and the apps, platforms, and other forms of media through which information is made available to different stakeholders. I take an interpretive and qualitative approach to the analysis of these systems as cultural artifacts (Winner 1980), to demonstrate how the political and social stakes of the technology are embedded throughout them.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_153
id ascaad2021_153
authors Valitabar, Mahdi; Mohammadjavad Mahdavinejad, Henry Skates, Peiman Pilechiha
year 2021
title Data-Driven Design of Adaptive Façades: View, Glare, Daylighting and Energy Efficiency
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 699-711
summary This paper attempts to increase occupants’ view to outside through Adaptive facades by employing a parametric design method. Reaching a balance between occupants’ requirements and the building energy criteria is the main objective of this research. To this end, a multi-objective optimization is done to generate some optimum models. The method, indeed, was used to optimize the shading size of a dynamic vertical shading system utilized on the south façade of a single office room located in Tehran. The shading system was defined by five parameters and a combination of Cut-off and a glare protection strategy is used to control dynamic shadings. The size-optimisation objectives are minimum DGP, cooling load and maximum illuminance, which were analysed by Ladybug Tools. Then, Octopus was used for multi-objective optimistion to find new optimum forms. Along with the openness factor, a new index is presented to evaluate the outside view in multiple louver shading systems, named “Openness Curvature Factor” (OCF). Thanks to this method, the size and shape of some optimum generated models were modified to increase the amount of OCF. Following that the Honeybee Plus is used to simulate the visual performance of modified models which shows a significant improvement. The modified models could provide about 4 times more outside view than generated models whilst keeping the DGP value in imperceptible range. Geometric or even complex non-geometric shading forms can be studied by this method to find optimum adaptive facades.
series ASCAAD
email
last changed 2021/08/09 13:14

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_071
id ascaad2021_071
authors Al Maani, Duaa; Saba Alnusairat, Amer Al-Jokhadar
year 2021
title Transforming Learning for Architecture: Online Design Studio as New Norm for Crises Adaptation Under COVID-19
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 129-141
summary For students, studying architecture necessitates a fundamental shift in learning mode and attitude in the transition from school. Beginner students are often surprised by the new mode of learning-by-doing and the new learner identity that they must adopt and adapt to in the design studio. Moreover, due to the COVID-19 pandemic, architecture teaching has moved online. Both instructors and students are experiencing dramatic changes in their modes of teaching and learning due to the sudden move from on-campus design studios to a virtual alternative, with only the bare minimum of resources and relevant experience. This study explored the virtual design studio as a transformative learning model for disaster and resilience context, including the factors that affect foundation students’ perceptions and experiences of the quality of this adaptation. Data obtained from 248 students who took online design studios during the lockdown in 15 universities in Jordan highlight many factors that make the experience of the online design studio more challenging. Despite these challenges, strongly positive aspects of the online studio were evident and widely discussed. A model of hyper-flexible design studio in which students can have a direct contact with their instructors when needed – in addition to online activities, reviews, and written feedback – is highly recommended for the beginner years. This HyFlex model will enrich students’ learning and understanding of the fundamentals of design and ensure that technology solutions deliver significant and sustainable benefits.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_021
id ascaad2021_021
authors Albassel, Mohamed; Mustafa Waly
year 2021
title Applying Machine Learning to Enhance the Implementation of Egyptian Fire and Life Safety Code in Mega Projects
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 7-22
summary Machine Learning has become a significant research area in architecture; it can be used to retrieve valuable information for available data used to predict future instances. the purpose of this research was to develop an automated workflow to enhance the implementation of The Egyptian fire & life safety (FLS) code in mega projects and reduce the time wasted on the traditional process of rooms’ uses, occupant load, and egress capacity calculations to increase productivity by applying Supervised Machine Learning based on classification techniques through data mining and building datasets from previous projects, and explore the methods of preparation and analyzing data (text cleanup- tokenization- filtering- stemming-labeling). Then, provide an algorithm for classification rules using C# and python in integration with BIM tools such as Revit-Dynamo to calculate cumulative occupant load based on factors which are mentioned in the Egyptian FLS code, determine classification and uses of rooms to validate all data related to FLS. Moreover, calculating the egress capacity of means of egress for not only exit doors but also exit stairs. In addition, the research is to identify a clear understanding about ML and BIM through project case studies and how to build a model with the needed accuracy.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_004
id ascaad2021_004
authors Ali, Nouran; Samir Hosny, Ahmed Abdin
year 2021
title Thermal Performance of Nanomaterials of a Medium Size Office Building Envelope: With a Special Reference to Hot Arid Climatic Zone of Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 385-396
summary Global warming is becoming a huge threat in the 21st century. The building is the main contributor to energy consumption and greenhouse gas emissions which play an important role in global warming. Using new technologies provides a step towards a better-built environment. Nanotechnology is an emerging technology that provides innovative materials that integrate with the building envelope to enhance energy efficiency and decrease energy consumption in buildings. Many Nano products are a promising candidate for building thermal insulation and increasing the building’s efficiency. This paper aims to reach minimum energy consumption by investigating Nanomaterials thermal performance on a building’s envelope in a hot arid climate. An office building in Cairo, Egypt is chosen as a case study. The paper presents an empirical/applied inquiry that is based on a computer simulation using Design Builder software. Energy consumption is calculated for different cases; the base model of the office building without using nanomaterials, and several nano models using nanomaterials. The results indicate that the use of Nanomaterials can enhance the thermal performance of the office building and save about 13.44 % of the annual energy consumption of the building.
series ASCAAD
email
last changed 2021/08/09 13:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_822577 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002