CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
doi https://doi.org/10.52842/conf.caadria.2021.1.051
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_095
id ascaad2021_095
authors Najafi, Ali; Peiman Pilechiha
year 2021
title Energy and Daylight Performance Optimization of Butterfly Inspired Intelligent Adaptive Façade
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 99-112
summary The Adaptive Solar Façade (ASF) as an integrated dynamic and flexible building facade could be a hopeful design tool to provide residents comfort and energy efficiency by applying relevant integrated parametric design. Based on that, in this study, we investigated a designing process and optimization of ASF concentrating on providing the visual comfort and energy efficiency. We start with an extended summary of previous studies which has been done for developing a dynamic system correspond to origami and butterfly wings. Afterwards, we design 10 movement patterns for façade at the next stage, we simulate the Illuminance uniformity distribution and amount of energy consumption in the interior area. It should be noted that this simulation is done hourly. Therefore, 52 base models were investigated in Hamedan without using intelligent façade. It should be considered that these models are offices and they are investigated in the cold tundra in four days of the year between 6 A.M. to 6 P.M. Afterwards, 520 façade affected proposed models simulated for comparing to the base model. We have done the latter simulation using Colibri plugin while it optimized linearly. All of the datasets have been processed in an algorithm circulation for analyzing the simulations results.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_049
id ascaad2021_049
authors Ramadan, Ayah
year 2021
title Double Green Façades using Parametric Sustainable Design: A Simulation Tools with Parametric Approach to Improve Energy Performance of Office Buildings in Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 727-741
summary Parametric Sustainable design of the indoor environment of double green façades buildings focus on the development of office building structure in Egypt and achieved indoor thermal comfort at a low level of energy use. The goal of this paper is to study parametric design from a wide perspective in order to classify its advantages and evaluate its skill to support Sustainable design. As building construction sector is the largest energy consumer, Operation hours of air conditioners is speedily increasing in the office buildings area through summer season, which already accounts for 50% of energy consumption in Egypt. This study was carried out based on the simulation in Design Builder (6) software. The case, studied in the article is for office building, newly erected building with surface area of 25, 500 m2 is considered as the basis for the parametric Sustainable study. The new energy model was simulated resulting in about 70% in HVAC consumption and approximately 75% for whole building energy consumption. Analysis results showed that parametric optimization of building envelope at the design stage is a practicable approach to reducing energy consumption in office building design.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ijac202119310
id ijac202119310
authors Schwartz, Yair; Raslan, Rokia; Korolija, Ivan; Mumovic, Dejan
year 2021
title A decision support tool for building design: An integrated generative design, optimisation and life cycle performance approach
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 401–430
summary Building performance evaluation is generally carried out through a non-automated process, where computational models are iteratively built and simulated, and their energy demand is calculated. This study presents a computational tool that automates the generation of optimal building designs in respect of their Life Cycle Carbon Footprint (LCCF) and Life Cycle Costs (LCC). This is achieved by an integration of three computational concepts: (a) A designated space-allocation generative-design application, (b) Using building geometry as a parameter in NSGA-II optimization and (c) Life Cycle performance (embodied carbon and operational carbon, through the use of thermal simulations for LCCF and LCC calculation). Examining the generation of a two-storey terrace house building, located in London, UK, the study shows that a set of building parameters combinations that resulted with a pareto front of near-optimal buildings, in terms of LCCF and LCC, could be identified by using the tool. The study shows that 80% of the optimal building’s LCCF are related to the building operational stage (o= 2), while 77% of the building’s LCC is related to the initial capital investment (o= 2). Analysis further suggests that space heating is the largest contributor to the building’s emissions, while it has a relatively low impact on costs. Examining the optimal building in terms compliance requirements (the building with the best operational performance), the study demonstrated how this building performs poorly in terms of Life Cycle performance. The paper further presents an analysis of various life-cycle aspects, for example, a year-by-year performance breakdown, and an investigation into operational and embodied carbon emissions.
keywords Generative design, genetic algorithms, thermal simulation, life cycle, carbon, LCA, NSGA-II, building performance
series journal
email
last changed 2024/04/17 14:29

_id sigradi2021_22
id sigradi2021_22
authors Silva, Mario, Garcia, Rafael and Carlo, Joyce
year 2021
title Daylight and Energy Consumption Assessment of a School Building Through Multi-Objective Optimization and Clustering Technique
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 229–239
summary Multi-objective problems usually employ conflicting objective functions, making the Simulation-Based Optimization process return a set of solutions. This study applies a clustering technique to analyze and characterize the solutions obtained in a school building optimization problem, maximizing daylight while minimizing energy consumption. We modeled the geometry using the Rhino + Grasshopper platform, following an existing building's characteristics. The parameters were the building's dimensions, openings' height, solar devices' and light shelves' reflectance, solar devices' distance from the facade, rotation angle, and depth of light shelves. We applied a clustering technique to group solutions according to their parametric similarities at the end of the optimization process. This approach made it possible to establish guidelines to support the designer's choice of the combination of parameters that best fits his purposes.
keywords school building, genetic algorithm, climate-based daylight modeling, clusterization
series SIGraDi
email
last changed 2022/05/23 12:10

_id ecaade2021_171
id ecaade2021_171
authors Woessner, Uwe, Kieferle, Joachim and Djuric, Marko
year 2021
title Operating Room Design with BIM, VR, AR, and Interactive Simulation
doi https://doi.org/10.52842/conf.ecaade.2021.2.049
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 49-58
summary Operating room design is a complex planning task. In order to jointly find the best solution, specialists from numerous professions are involved in the planning process, since e.g. equipment layout and airflow is crucial for optimal surgical procedures. For a better and more informed discussion, and thus better optimization and firm decisions, we have developed a method linking BIM (Building Information Modelling), VR (Virtual Reality), AR (Augmented Reality), CFD (Computational Fluid Dynamics) simulation, and a tangible user interface, so that freely configurable layouts can be tested interactively, be discussed, and optimized both in model and 1:1 scale already in early planning phases. This method has been applied to a hospital design with 33 new operating rooms, differing in sizes as well as layouts according to the different types of operations.
keywords Operating Room Design; Interactive Simulation; Virtual Reality; Augmented Reality; Tangible User Interface; BIM
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_161
id caadria2021_161
authors Zhao, Xin, Han, Yunsong and Shen, Linhai
year 2021
title Multi-objective Optimisation of a Free-form Building Shape to improve the Solar Energy Utilisation Potential using Artificial Neural Networks
doi https://doi.org/10.52842/conf.caadria.2021.1.221
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 221-230
summary Optimisation of free-form building design is more challenging in terms of building information modelling and performance evaluation compared to conventional buildings. The paper provides a Photogrammetry-based BIM Modelling - Machine Learning Modelling - Multi-objective Optimisation framework to improve the solar energy utilisation potential of free-form buildings. Low altitude photogrammetry is used to collect the building and site environmental information. An ANN prediction model is developed using the control point coordinates and simulation data. Through parametric programming, the multi-objective algorithm is coupled with the ANN model to obtain the trade-off optimal building form. The results show that the maximum solar radiation value in winter can increase by 30.60% and the minimum solar radiation in summer can decrease by 13.99%. It is also shown that the integration of ANN modelling and photogrammetry-based BIM modelling into the multi-objective optimisation method can accelerate the optimisation process.
keywords Multi-objective optimisation; Artificial neural network; Free-form shape building ; Solar energy utilisation
series CAADRIA
email
last changed 2022/06/07 07:57

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_004
id ascaad2021_004
authors Ali, Nouran; Samir Hosny, Ahmed Abdin
year 2021
title Thermal Performance of Nanomaterials of a Medium Size Office Building Envelope: With a Special Reference to Hot Arid Climatic Zone of Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 385-396
summary Global warming is becoming a huge threat in the 21st century. The building is the main contributor to energy consumption and greenhouse gas emissions which play an important role in global warming. Using new technologies provides a step towards a better-built environment. Nanotechnology is an emerging technology that provides innovative materials that integrate with the building envelope to enhance energy efficiency and decrease energy consumption in buildings. Many Nano products are a promising candidate for building thermal insulation and increasing the building’s efficiency. This paper aims to reach minimum energy consumption by investigating Nanomaterials thermal performance on a building’s envelope in a hot arid climate. An office building in Cairo, Egypt is chosen as a case study. The paper presents an empirical/applied inquiry that is based on a computer simulation using Design Builder software. Energy consumption is calculated for different cases; the base model of the office building without using nanomaterials, and several nano models using nanomaterials. The results indicate that the use of Nanomaterials can enhance the thermal performance of the office building and save about 13.44 % of the annual energy consumption of the building.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ijac202119101
id ijac202119101
authors Budig, Michael; Oliver Heckmann, Markus, Hudert, Amanda Qi Boon Ng, Zack Xuereb Conti, and Clement Jun Hao Lork
year 2021
title Computational screening-LCA tools for early design stages
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 6–22
summary Life Cycle Assessment (LCA) has been widely adopted to identify the Global Warming Potential (GWP) in the construction industry and determine its high environmental impact through Greenhouse Gas (GHG) emissions, energy and resource consumptions. The consideration of LCA in the early stages of design is becoming increasingly important as a means to avoid costly changes at later stages of the project. However, typical LCA-based tools demand very detailed information about structural and material systems and thus become too laborious for designers in the conceptual stages, where such specifications are still loosely defined. In response, this paper presents a workflow for LCA-based evaluation where the selection of the construction system and material is kept open to compare the impacts of alternative design variants. We achieve this through a strict division into support and infill systems and a simplified visualization of a schematic floor layout using a shoebox approach, inspired from the energy modelling domain. The shoeboxes in our case are repeatable modules within a schematic floor plan layout, whose enclosures are defined by parametric 2D surfaces representing total ratios of permanent supports versus infill components. Thus, the assembly of modular surface enclosures simplifies the LCA evaluation process by avoiding the need to accurately specify the physical properties of each building component across the floor plan. The presented workflow facilitates the selection of alternative structural systems and materials for their comparison, and outputs the Global Warming Potential (GWP) in the form of an intuitive visualization output. The workflow for simplified evaluation is illustrated through a case study that compares the GWP for selected combinations of material choice and construction systems.
keywords Computational life cycle assessment tool, embodied carbon, parametric design, construction systems, global warming potential
series journal
email
last changed 2021/06/03 23:29

_id ecaade2021_230
id ecaade2021_230
authors De Luca, Francesco, Sepúlveda, Abel and Varjas, Toivo
year 2021
title Static Shading Optimization for Glare Control and Daylight
doi https://doi.org/10.52842/conf.ecaade.2021.2.419
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 419-428
summary Daylight and solar access influence positively building occupants' wellbeing and students' learning performance. However, an excess of sunlight can harm the visual comfort of occupants through disturbing glare effects. This study investigated, through multi-objective optimization, the potential of static shading devices to reduce glare and to guarantee daylight provision in a university building. The results showed that the reduction of disturbing glare was up to more than twice the reduced daylight, which nevertheless, was provided in adequate levels. View out and energy performance were also analyzed. Detailed results of optimal shading types and classrooms layout indications are presented.
keywords Daylight; Visual comfort; Shading; Multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2021_56
id sigradi2021_56
authors Duclos-Prevet, Claire, Guena, François and Effron, Mariano
year 2021
title Constrained Multi-Criteria Optimization for Integrated Design in Professional Practice
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 29–40
summary To design sustainable architecture, theory encourages architects to rely on automated exploration processes. In practice, the problems encountered are often multicriteria and under constraint. This paper compares different constraint handling strategies, approachable to designer, for processes involving evolutionary algorithms. Four methods are tested on a case study from professional practice. Two methods rely on parametric models: the penalty function method and the use of hyperparameters. The others involve the use of generative techniques: a rule-based method and a repair algorithm that takes the form of an agent-based model. This study highlights the significant impact of the choice of the constraint management method on exploration performance. Among other results, it appears that models involving the use of generative techniques are more efficient than those using parametric models. This calls for the development of dedicated tools.
keywords building enveloppe design, generative design, agent-based modeling, multiobjective genetic algorithm, daylighting simulation
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_055
id ascaad2021_055
authors El Hussainy, Mariam; Mohammed Mayhoub, Ahmed El Kordy
year 2021
title A Computational Approach for Optimizing the Daylighting Performance of Existing Buildings
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 69-83
summary Daylighting provision gives a significant contribution to the enhancement of the indoor visual environment and user comfort. This study aims to provide a methodology to assess and optimize daylighting performance in buildings. The paper utilizes simulation techniques for identifying the most efficient daylight performance by incorporating parametric optimization tools to enhance the daylighting performance of existing buildings. The developed workflow includes three consecutive phases. The first examines the daylighting performance of the existing building. The second phase is concerned with daylighting adequacy and the third aims to optimize the quality of light rather than just the quantity through the utilization of a simple shading system to parametrically investigate the effect of using different shading configurations on daylighting performance and to select the optimal solution. A louver system was parameterized according to a predefined process that associates its depth, count and rotation angle while a vertical screen was parametrized according to its scale and tilt angle. To examine the potentials of the proposed multi-stage method, it has been implemented on an office building located in new Cairo, Egypt. The results demonstrate that using the proposed optimization strategy drastically enhanced the Spatial Daylighting Autonomy of the building from 27% to 87% in comparison with the base case. Moreover, the optimum shading solution enhanced the daylighting quality by reducing the glare probability for better visual comfort from 60% to only 14%.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_113
id caadria2021_113
authors Fink, Theresa, Vuckovic, Milena and Petkova, Asya
year 2021
title KPI-Driven Parametric Design of Urban Systems
doi https://doi.org/10.52842/conf.caadria.2021.2.579
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 579-588
summary We present a framework for data-driven algorithmic generation and post-evaluation of alternative urban developments. These urban developments are framed by a strategic placement of diverse urban typologies whose spatial configurations follow design recommendations outlined in existing building and zoning regulations. By using specific rule-based generative algorithms, different spatial arrangements of these urban typologies, forming building blocks, are derived and visualized, given the aforementioned spatial, legal, and functional regulations. Once the envisioned urban configurations are generated, these are evaluated based on a number of aspects pertaining to spatial, economic, and thermal (environmental) dimensions, which are understood as the key performance indicators (KPIs) selected for informed ranking and evaluation. To facilitate the analysis and data-driven ranking of derived numeric KPIs, we deployed a diverse set of analytical techniques (e.g., conditional selection, regression models) enriched with visual interactive mechanisms, otherwise known as the Visual Analytics (VA) approach. The proposed approach has been tested on a case study district in the city of Vienna, Austria, offering real-world design solutions and assessments.
keywords Urban design evaluation; parametric modelling; urban simulation; environmental performance; visual analytics
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_404
id caadria2021_404
authors Kim, Jong Bum, Aman, Jayedi and Balakrishnan, Bimal
year 2021
title Forecasting performance of Smart Growth development with parametric BIM-based microclimate simulations
doi https://doi.org/10.52842/conf.caadria.2021.1.411
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 411-420
summary Smart Growth is a fast-growing urban design and planning movement developed by the United States Environmental Protection Agency (EPA). These regulations control urban morphologies such as building form, position, façade configurations, building materials, road configurations, which have an explicit association with the microclimate and outdoor comfort. This paper presents an urban modeling and simulation framework that can represent the urban morphology and its impact on microclimate shaped by Smart Growth. First, we created urban models using custom parametric objects and a building component library in BIM. Then we integrated parametric BIM and multiple performance simulations, including wind analysis, solar accessibility, and energy use. For implementation, a case study was carried out using two Smart Growth regulations in the Kansas City metropolitan area. The paper elaborates on the findings from simulation results, challenges in implementation, and limitations of the proposed framework to manage a large number of regulation variables in simulation.
keywords Smart Growth Regulations; Building Information Modeling (BIM); Parametric Simulation; Microclimate Simulation; Computational Fluid Dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_284
id ecaade2021_284
authors Luis, Orozco, Krtschil, Anna, Wagner, Hans-Jakob, Simon, Bechert, Amtsberg, Felix, Skoury, Lior, Knippers, Jan and Menges, Achim
year 2021
title Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey Construction
doi https://doi.org/10.52842/conf.ecaade.2021.1.303
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 303-312
summary This paper presents an agent-based method for the design of complex timber structures. This method features a multi-level agent simulation, that relies on a feedback loop between agent systems and structural simulations that update the agent environment. Such an approach can usefully be applied for the design of variable density timber slab systems, where material arrangements based on structural, fabrication, and architectural boundary conditions are necessary. Such arrangements can lead to multi-directional spanning slabs that can accept pointwise supports in unique layouts. We discuss the implementation of such a method on the basis of the structural design of a pavilion-scale multi-storey testing setup. The presented method enables a more versatile approach to the design of multi-storey timber buildings, which should increase their applicability to a diverse range of building typologies.
keywords Agent-Based Modelling; Robotic Timber Construction; Computational Design; Multi-Storey Timber Buildings
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_307
id caadria2021_307
authors Ortner, Frederick Peter and Tay, Jing Zhi
year 2021
title Pandemic resilient housing - modelling dormitory congestion for the reduction of COVID-19 spread
doi https://doi.org/10.52842/conf.caadria.2021.2.589
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 589-598
summary In response to pandemic-related social distancing measures, this paper presents a computational model for simulating resident congestion in Singapores migrant worker dormitories. The model is presented as a tool for supporting evidence-based building design and management. In contrast to agent-based or network-based building analysis, we demonstrate a method for implementing a schedule-based building simulation. In this paper we present the key functions and outputs of the computational model as well as results from analysis of a case study and its design variants. Learnings on the comparative advantages of schedule modification versus physical design modification in assisting social distancing are presented in a discussion section. In the conclusion section we consider applications of our learnings to other dense institutional buildings and future directions for evidence-based design for resilient buildings.
keywords Collective,collaborative & interdisciplinary design; Computational design research & education; Disrupted practices,resilience,and social sustainability; Simulation,visualization and impact projection
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac202119202
id ijac202119202
authors Ostrowska-Wawryniuk, Karolina
year 2021
title Prefabrication 4.0: BIM-aided design of sustainable DIY-oriented houses
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 142–156
summary In the context of continuous housing shortage, increasing construction standards and rising labour costs, one of the possibilities to address this array of problems is prefabrication directed towards do-it-yourself (DIY) construction methods. This paper presents a prototype tool for aiding the design of DIY-oriented single-family houses with the use of small-element timber prefabrication. The introduced solution uses the potential of BIM technology for adapting a traditionally designed house to the prefabrication requirements and reduction of waste generated in the assembly process. The experimental tool was developed in the Autodesk Revit software. It incorporates custom Dynamo-for-Revit scripts. The experimental tool implemented the user- and technology-specified boundary conditions and converted an input BIM model into a prefabricated alternative. The tool was tested on the design of a two-story single-family house. The results compare the automated optimized panelization with manual approach. The simulation revealed the possibility of the construction waste reduction by at least 50% when comparing to the non-optimized panelization.
keywords DIY construction, prefabricated house, timber prefabrication, small-panel prefabrication, BIM-aided panelization, Building Information Modelling
series journal
email
last changed 2024/04/17 14:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_47262 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002