CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 598

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
doi https://doi.org/10.52842/conf.caadria.2021.1.051
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_130
id ecaade2021_130
authors Alassaf, Nancy and Clayton, Mark
year 2021
title The Use of Diagrammatic Reasoning to Aid Conceptual Design in Building Information Modeling (BIM)
doi https://doi.org/10.52842/conf.ecaade.2021.2.039
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 39-48
summary Architectural design is an intellectual activity where the architect moves from the abstract to the real. In this process, the abstract represents the logical reasoning of how architectural form is configured or structured, while the real refers to the final physical form. Diagrams become an integral part of the conceptual design stage because they mediate between those two realms. Building Information Modeling (BIM) can reallocate the effort and time to emphasize conceptual design. However, many consider BIM a professionally-oriented tool that is less suitable for the early design stages. This research suggests that architectural design reasoning can be achieved using constraint-based parametric diagrams to aid conceptual design in BIM. The study examines several techniques and constructs a framework to use diagrams in the early design stages. This framework has been investigated through Villa Stein and Citrohan House by Le Corbusier. This study addresses two roles of diagrams: the generative role to create various design solutions and the analytical one to conduct an early performance study of the building. Our research contributes to the discussion on the ways designers can use digital diagrams to support the architectural design process.
keywords Building Information Modeling (BIM); Performance analysis ; Architectural Form; Diagram; Parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2021_359
id sigradi2021_359
authors Carrasco-Walburg, Carolina, Valenzuela-Astudillo, Eduardo, Maino-Ansaldo, Sandro, Correa-Díaz, Matías and Zapata-Torres, Diego
year 2021
title Experiential Teaching-learning Tools: Critical Study of Representational Media and Immersion in Architecture
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 475–488
summary The use of Virtual Reality (VR) in teaching-learning process of design, theory and history of architecture has increased in terms of virtual tours. A preliminary study of techniques and capabilities of Immersive Virtual Reality (IVR) systems allowed us to establish that the immersive and interactive virtual experience facilitates the perception and enhancement of spatial qualities. In addition, it facilitates analysis since it promotes observation and the development of spatial thinking. However, the use of this medium as a tool for analysis is less frequent. Therefore, in this research we comparatively evaluate the impact that VR has on such a task. We developed an analysis instrument using experiential learning cycles that was tested with students in control and experimental groups. As a result, we found that the experience of inhabiting facilitates integration of fundamental concepts, allowing empirical evaluation of architecture and streamlining communication in the classroom as an active learning strategy.
keywords Virtual Reality, Architecture, Spatial Perception, Experiential Learning, Teaching-Learning Process
series SIGraDi
email
last changed 2022/05/23 12:11

_id ijac202119312
id ijac202119312
authors Chen, Chen; Chacón Vega, Ricardo Jose; Kong, Tiong Lee
year 2021
title Using genetic algorithm to automate the generation of an open-plan office layout
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 449–465
summary Today, the concept of open plan is more and more widely accepted that many companies have switched to open-plan offices. Their design is an issue in the scope of space layout planning. Although there are many professional architectural layout design software in the market, in the real life, office designers seldom use these tools because their license fees are usually expensive and using them to solve an open-plan office design is like using an overly powerful and expensive tool to fix a minor problem. Therefore, manual drafting through a trial and error process is most often used. This article attempts to propose a lightweight tool to automate open-plan office layout generation using a nested genetic algorithm optimization with two layers, where the inner layer algorithm is embedded in the outer one. The result is enhanced by a local search. The main objective is to maximize space utilization by maximizing the size of the open workspace. This approach is different from its precedents, in that the location search is conducted on a grid map rather than several pre-selected candidate locations. Consequently, the generated layout design presents a less rigid workstation arrangement, inviting a casual and unrestrictive work environment. The real potential of the approach is reflected in the productivity of test fits. Automating and simplifying the generation of layouts for test fits can tremendously decrease the amount of time and resources required to generate them. The experimental case study shows that the developed approach is powerful and effective, making it a totally automated process.
keywords Automated process, office design, genetic algorithm, open-plan office, space layout planning
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_389
id caadria2021_389
authors del Campo, Matias
year 2021
title Architecture,Language and AI - Language,Attentional Generative Adversarial Networks (AttnGAN) and Architecture Design
doi https://doi.org/10.52842/conf.caadria.2021.1.211
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 211-220
summary The motivation to explore Attentional Generative Adversarial Networks (AttnGAN) as a design technique in architecture can be found in the desire to interrogate an alternative design methodology that does not rely on images as starting point for architecture design, but language. Traditionally architecture design relies on visual language to initiate a design process, wither this be a napkin sketch or a quick doodle in a 3D modeling environment. AttnGAN explores the information space present in programmatic needs, expressed in written form, and transforms them into a visual output. The key results of this research are shown in this paper with a proof-of-concept project: the competition entry for the 24 Highschool in Shenzhen, China. This award-winning project demonstrated the ability of GraphCNN to serve as a successful design methodology for a complex architecture program. In the area of Neural Architecture, this technique allows to interrogate shape through language. An alternative design method that creates its own unique sensibility.
keywords Artificial Intelligence; Machine Learning; Artificial Neural Networks; Semiotics; Design Methodology
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_160
id caadria2021_160
authors Ding, Jie and Xiang, Ke
year 2021
title The influence of spatial geometric parameters of Glazed-atrium on office building energy consumption in the hot summer-warm winter region of China
doi https://doi.org/10.52842/conf.caadria.2021.1.391
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 391-400
summary To investigate the influence of the spatial geometric parameters of glazed-atrium on building energy consumption, this study established a prototypical office building model in the hot summer-warm winter region in China, and simulated the effect of energy consumption of six selected factors based on orthogonal experimental design (OED). Through the statistical analysis, the results showed that the floor height and the skylight-roof ratio were the most important parameters affecting the total energy consumption, with the contribution rates of 55.5% and 18.2%, followed by the section shape parameter and the plane orientation. In addition, the floor height and the section shape parameter were closely related to the cooling load and the lighting load, respectively, and both energy consumption could be reduced to a lower degree when the atrium inner interface window-wall ratio was 60%. Finally, the optimized parameter combination and energy-saving design strategies were proposed. This study provides architects with a simplified energy evaluation of atrium spatial geometric parameters in the early design stage, and it has an important guiding significance for the sustainable development of office buildings in the future.
keywords Energy consumption; Spatial geometric factors; Glazed atrium; Office building; Hot summer–warm winter region
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_20
id sigradi2021_20
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2021
title Non-Fungible Building Components: Using Smart Contracts for a Circular Economy in the Built Environment
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1189–1198
summary The presented research study tackles the topic of economic and material sustainable development in the built environment and construction industry by introducing and applying the concept and the potential of Non-Fungible Tokens (NFTs) on blockchain within the early stages of the design process via the interface of common design software. We present a digital infrastructure layer for architectural assets and building components that can integrate with AEC supply chains, enabling a more effective and articulated development of circular economies. The infrastructure layer consists of a combination of topology graphs secured with a blockchain. The paper concludes with a discussion about the possibilities of material passports as well as circular economy and smart contracts as an infrastructure for whole lifecycle BIM and digital encapsulation of value in architectural design.
keywords Non-fungible tokens, Blockchain, Supply Chain, Building Representation, Circular Economy
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_56
id sigradi2021_56
authors Duclos-Prevet, Claire, Guena, François and Effron, Mariano
year 2021
title Constrained Multi-Criteria Optimization for Integrated Design in Professional Practice
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 29–40
summary To design sustainable architecture, theory encourages architects to rely on automated exploration processes. In practice, the problems encountered are often multicriteria and under constraint. This paper compares different constraint handling strategies, approachable to designer, for processes involving evolutionary algorithms. Four methods are tested on a case study from professional practice. Two methods rely on parametric models: the penalty function method and the use of hyperparameters. The others involve the use of generative techniques: a rule-based method and a repair algorithm that takes the form of an agent-based model. This study highlights the significant impact of the choice of the constraint management method on exploration performance. Among other results, it appears that models involving the use of generative techniques are more efficient than those using parametric models. This calls for the development of dedicated tools.
keywords building enveloppe design, generative design, agent-based modeling, multiobjective genetic algorithm, daylighting simulation
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_028
id ascaad2021_028
authors Fahmy, Marwa
year 2021
title Applying Urban Parametricism in the Design of Dynamic Neighborhoods
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 646-660
summary Neighborhoods are considered basic spatial units of an urban area. Their forms have complex and hierarchical structures that contain building layouts, street segments, street networks and etc.. The traditional ways of computationally producing neighborhoods have proven incompetence. Some of these conventional ways focus on the morphological approaches, but they do not include all urban features. Meanwhile, other models that can design urban features have limited formulation flexibility. Besides the absence of dynamic generation behavior as they don’t use parametric techniques. They lack interactivity with the surroundings as they don’t use streets as the main generator of neighborhoods. Additionally, they don’t have the ability of automatically analyzing the site. Other models are generated for a specific location and miss the interactivity with other sites. This study implements parametric techniques to generate an urban model with wide design varieties. Furthermore, the model has dynamic morphological behavior, capable of interacting with the designer's modifications. This study focuses on the streets and grid as the dominant element of neighborhoods. The study also presents a predefined function in the scripting process. The model also proposes a python switcher to allow easy accessing all the inputs. Also, the research converts the elements to be more interactive, responsive, flexible, and dynamic. Therefore, all the neighborhood elements are simultaneously created according to user requirements. The study method is divided into three stages: Decomposition, Formulation, Modeling, and evaluation. Each process is defined with its tools, inputs, and parameters.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_137
id caadria2021_137
authors Fattahi Tabasi, Saba, Alaghmandan, Matin and Rafizadeh, Hamid Reza
year 2021
title Simultaneous effect of form modifications and topology of the bracing system on the structural performance of timber high rise building - Introducing an innovative approach using parametric design
doi https://doi.org/10.52842/conf.caadria.2021.1.421
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 421-430
summary Topology optimization is a tool that minimizes the material consumption in a structure, while at the same time provides us design alternatives integrating architectural and structural engineering concepts. However, topology optimization is a structural engineering subject and its known methods are required professional knowledge of engineering to be used. In this article, the mutual effect of form modifications and topology of the bracing system in a 9-story timber exoskeleton high-rise building regarding the governing wind load and seismic load is examined. What differentiates this study from former ones and in fact its main purpose is introducing an innovative approach towards structural topology optimization using parametric design. In this innovative approach, the possibility of moving for each central node of bracing systems in defined ranges independently and the possibility of the existence or absence of each bracing member is provided. This parametric model will enable architects to optimize the topology of the structural elements which are part of their architectural design by themselves. The CMA-ES-algorithm-based optimization is done to minimize both total mass of structure per unit area and the horizontal displacement of the top floor. For modeling, optimizing cross-sections and structural analysis, Grasshopper and its plug-in called Karamba are utilized.
keywords Topology optimization; Form finding; Parametric design; Timber tall buildings; Exoskeleton structures
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_010
id ecaade2021_010
authors Huang, Yurong, Butler, Andrew, Gardner, Nicole and Haeusler, M. Hank
year 2021
title Lost in Translation - Achieving semantic consistency of name-identity in BIM
doi https://doi.org/10.52842/conf.ecaade.2021.2.009
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 9-20
summary Custom room naming in architectural projects can vary considerably depending on the user. Having multiple and diverse names for the same room is particularly problematic for information retrieval processes in BIM-based projects. Current best practice includes either team agreement on naming labels in BIM or manual renaming to align with an office-wide standard. Both remain laborious and flawed and lead to compounding errors. This research explores how an automated naming-standardization workflow can enhance the interoperability of object-based modeling in a BIM environment and make information retrieval more reliable for a project life cycle. This paper presents research on (1) building a custom corpus specialized for architectural terminology to fit into the BIM environment and (2) devising a standard-naming system titled WuzzyNaming to save manual work for BIM users in maintaining room-name consistency. Our presented workflow applied natural language processing (NLP) technique and Fuzzy logic to perform the semantic analysis and automate the BIM room-name standardization.
keywords Building information modeling; Natural Language Processing; Data interoperability; Naming convention; Fuzzy logic
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2021_404
id caadria2021_404
authors Kim, Jong Bum, Aman, Jayedi and Balakrishnan, Bimal
year 2021
title Forecasting performance of Smart Growth development with parametric BIM-based microclimate simulations
doi https://doi.org/10.52842/conf.caadria.2021.1.411
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 411-420
summary Smart Growth is a fast-growing urban design and planning movement developed by the United States Environmental Protection Agency (EPA). These regulations control urban morphologies such as building form, position, façade configurations, building materials, road configurations, which have an explicit association with the microclimate and outdoor comfort. This paper presents an urban modeling and simulation framework that can represent the urban morphology and its impact on microclimate shaped by Smart Growth. First, we created urban models using custom parametric objects and a building component library in BIM. Then we integrated parametric BIM and multiple performance simulations, including wind analysis, solar accessibility, and energy use. For implementation, a case study was carried out using two Smart Growth regulations in the Kansas City metropolitan area. The paper elaborates on the findings from simulation results, challenges in implementation, and limitations of the proposed framework to manage a large number of regulation variables in simulation.
keywords Smart Growth Regulations; Building Information Modeling (BIM); Parametric Simulation; Microclimate Simulation; Computational Fluid Dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia21_280
id acadia21_280
authors Koleva, Denitsa; Özdemir, Eda; Tsiokou, Vaia; Dierichs, Karola
year 2021
title Designing Matter
doi https://doi.org/10.52842/conf.acadia.2021.280
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 280-291.
summary Autonomously shape-changing granular materials are investigated as architectural construction materials. They allow the embedding of different mechanical behaviors in the same material system through the design of their component particles. Granular materials are defined as large numbers of individual elements of larger than a micron. Because they are not bound to each other, only the contact forces act between them. The design of individual particles affects the behavior of a granular substance composed of such materials. The design process involves the definition of the form and materiality of the particle in relation to the desired function of the granular material. If shape-change materials are deployed in the making of the particles, the granular material can have more than one designed behavior, for example, both liquid and solid phases. Autonomously shape-changing granular materials have seldom been explored in either architecture or granular physics. Thus their exploration is both a relevant and a novel contribution to the field of granular architectures in specific and computational architectural design in general.

This article outlines the field of autonomously shape-changing granular materials and embeds them in the current state. Experimental and simulation methods for the development of shape-changing particles and granular materials are introduced. A case study on the development and testing of autonomously shape-changing particles made from a bimetal is also presented. Further research is outlined with respect to the practical, methodological, and conceptual development of an autonomously shape-changing designed granular material.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_054
id ascaad2021_054
authors Kontovourkis, Odysseas; Andreas Konstantinou, Nikos Kyrizi, Panagiota Tziourrou,
year 2021
title Built-In Immersive VR Technology for Decision-Making in Design and Simulation of a Flexible Shading Device
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 190-200
summary This paper discusses the potential offered by Virtual Reality (VR) and accompanied gesture-based devices as tools for architectural design and simulation. This is done by outlining a workflow and by demonstrating an experimental study for the development of an interactive, flexible and parametric shading device consisting of bending-active wooden strips. More specifically, the project focuses on the relationship between physical inputs acquisition and virtual experience of two users in space. Through the use of Kinect and VR headset, the first user is responsible to check and control the shading system regarding the shape and sun direction. The aim is to create configurations that serves his/her shading needs by moving his/her hand in order to hide the sun in a game like procedure until satisfactory shading is acquired. The second user, through the use of a leap motion sensor and a projection screen, is able to check and control the efficiency of structure in terms of bending behavior and environmental impact, also in a loop of possibilities. Using the thump and pointer fingers he/she controls the bending behavior by watching a screen that shows in different colours the bending factor of each element. At the same time, the distance between his/her hands controls the number of elements in order to achieve the optimal rate between material consumption and shading. The two users can intervene sequentially or concurrently during the process. A series of investigations related to shading rate and bending behavior as well as minimum material consumption leading to lower environmental impact are conducted. This attempts to offer useful conclusions as regard the potential application of immersive VR technology as mechanism for decision-making in architecture and simulation but also in the fabrication of the suggested shading device.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
doi https://doi.org/10.52842/conf.caadria.2023.2.231
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2021_272
id caadria2021_272
authors Naruse, Masashi, Bileguutee, Ulemjjargal and Mizutani, Akihiro
year 2021
title A study on chair design by interactive three-dimensional modeling using sketching interface
doi https://doi.org/10.52842/conf.caadria.2021.2.263
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 263-272
summary This paper discusses the potential derived by developing a sketching interface to achieve an intuition-oriented design process for beginners, focusing on fabrication. Using experiments and a questionnaire, we evaluate both the method developed and the change in the consciousness of participation in full-scale 3D (Three Dimensional) design. A specific feature of the developed sketching interface is that it is not fully packaged; it means designers can modify and customize a tool to their needs. However, there was no difference between the sketching interface and ordinary 3D CAD (Computer-Aided Design) in increasing the motivation to use computers to fabricate; including a customizable feature (not fully packaged) could open up the possibilities of increasing motivation for the subjects to participate in the fabrication. The experiment results demonstrated that the sketching interface input system has equivalent reproducibility to existing 3D CAD, and even beginners can intuitively and immediately realize fabrication.
keywords 3D CAD; sketching interface; fabrication support; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id ecaade2021_332
id ecaade2021_332
authors Rust, Romana, Xydis, Achilleas, Frick, Christian, Strauss, Jürgen, Junk, Christoph, Feringa, Jelle, Gramazio, Fabio and Kohler, Matthias
year 2021
title Computational Design and Evaluation of Acoustic Diffusion Panels for the Immersive Design Lab - An acoustic design case study
doi https://doi.org/10.52842/conf.ecaade.2021.1.515
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 515-524
summary Acoustic performance is an important criterion for architectural design. Much is known about sound absorption, but little about sound scattering, although it is equally important for improving the acoustic quality of built spaces. This paper presents an alternative workflow for the computational design and evaluation of acoustic diffusion panels, which have been developed and realized in a real building project - the Immersive Design Lab (IDL). This workflow includes a computational design system, which is integrated with a rough acoustic evaluation method for fast performance feedback, as well as the assessment of acoustic performance with an experimental measurement setup, and the post-processing of a selected design instance for fabricability. The paper illustrates and discusses this workflow on the basis of the presented design study.
keywords Architectural Acoustics; Performance-based Design; Digital Workflow
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia21_492
id acadia21_492
authors Römert, Olivia; Zboinska, Malgorzata A.
year 2021
title Aligning the Analog, Digital, and Hyperreal
doi https://doi.org/10.52842/conf.acadia.2021.492
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 492-501.
summary This work explores the relevance of photogrammetry-generated errors for contemporary architectural design. Unlike approaches featuring correction or elimination of such errors, this study demonstrates how they can be accommodated in the design process to expand its exploratory boundaries and emancipate the designer from the need of ultimate control. The work also highlights the relevance of software error explorations in the context of modern media culture theory and critical discourses on computer-generated imagery. By exploring the errors of photogrammetry, the study sought to highlight its potential as a creative exploration medium instead of a mere representation tool, using new interventions to an existing building as an experimental brief. Conducting the explorations within the philosophical framework of Jean Baudrillard's four orders of the image, and relating them to contrasting discourses, allowed to coin their most important creative and esthetic values. It revealed how surplus, leftover and undesirable data can be harnessed to provide a critical trajectory, through computation, to fields like historic preservation and adaptive reuse. The study concludes by proposing that photogrammetry errors, although distancing the digital representation from an accurate depiction of analog reality, do not deprive it of new meaning. Conversely, they generate new esthetic, spatial and functional qualities that uncover alternative, critical ways of architectural creation. Conducting error explorations in the context of philosophies debating the value of the real and hyperreal increases their discursive potential, legitimizing the agency of software errors in architectural computing.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_449296 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002