CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ecaade2021_125
id ecaade2021_125
authors Heidari, Farahbod, Mahdavinejad, Mohammadjavad, Werner, Liss C. and Khayami, Sima
year 2021
title PH Computation to Growth Prediction
doi https://doi.org/10.52842/conf.ecaade.2021.1.095
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 95-104
summary Bacterial cellulose is a bio self-assembled organic material with unique features such as great tensile strength, biodegradability, and renewable potential that has made it worthwhile for different fields of industrial development research. Since the past decade, in the field of architecture also, enormous efforts were done to reach the desired guided shape of bacterial cellulose with optimized structural features. However, all these efforts are in their infancy. To reach the adaptive architectural bio-component, we need something beyond static prototyping. Therefore, we investigate the specific type "Bacterium Glucoacetobacter xylinus(BC)" cellulose growth procedure by syncing the culture medium (cellulose growth environment) to a virtual stimulating environment to introduce the computational architectural design process based on dynamic biological structures. This research presents the smart design process via the syncing of CAD environment and growth environment to create a framework that provides data analysis that the implementation of its outcomes can revolutionize the bio-digital fabrication process.
keywords Bio-fabrication; Bio-based material; Biocomputation; Living Functional Components; Pattern Recognition; AI prediction
series eCAADe
email F-Heidari@Modares.ac.ir
last changed 2022/06/07 07:49

_id ijac202119103
id ijac202119103
authors Liu, Jingyang; Yi-Chin Lee, and Daniel Cardoso Llach
year 2021
title Computational design and fabrication of highly customizable architectural space frames: Making a flat-cut Weaire-Phelan structure
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 37–49
summary This paper documents a computational approach to the design, fabrication, and assembly of customizable space structures built entirely out of flat-cut interlocking elements without the need of nodes, fasteners, cement, or glue. Following a Research by Design (RbD) methodology, we establish a framework comprising geometric and parametric modeling, structural analysis, and digital fabrication stages to examine the following research question: how might the modularity of a construction kit be combined with the plasticity of parametric descriptions to facilitate the design and fabrication of flat-cut space structures? We find that an adaptive joint design that resolves local deformations at the node and element levels can facilitate the construction of flat-cut space structures by making modular components responsive to local geometric, material, and mechanical demands. The research centers on the design and construction of an architecture-scale installation based on the Weaire-Phelan structure—an aperiodic space-filling geometric structure that approximates the geometry of foam—entirely out of flat-cut interlocking elements. Documenting the process in technical detail, as well as some limitations, the paper contributes to recent efforts to develop digital materials suitable for architectural applications. In addition, it contributes to extend the formal and architectural possibilities of flat-cut space structure design by facilitating “bottom-up” design explorations in concert with the structure’s tectonic resolution.
keywords Computational design, generative fabrication, construction kit
series journal
email dcardoso@andrew.cmu.edu
last changed 2021/06/03 23:29

_id ecaade2021_222
id ecaade2021_222
authors Azambuja Varela, Pedro, Sousa, José Pedro and Silva Dias, Joana
year 2021
title Drawing-to-Factory Process - Using freehand drawing to drive robotic assembly of brick walls
doi https://doi.org/10.52842/conf.ecaade.2021.1.189
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 189-194
summary The developments of digital technology applied to architecture in the recent decades has allowed for direct communication from the studio to fabrication. However, this process is typically dependent on complicated computational processes, enlarging the distance from the benefits of the traditional drawing approaches employed by architects. This research intends to explore possibilities of reenacting the drawing as a means of computational generative design which feeds automated systems of construction. By using a Cobot directed by an algorithm which reads a simple drawn curve on paper, an automated brick wall is built, as demonstrated in two exhibitions. This mixed approach allows for technology in architectural design and construction to be more accessible to a wider audience, while blurring the boundaries between concept and materialization.
keywords robotic assembly; human-robot collaboration; non-standard structures; digital fabrication; computational design; interactive fabrication
series eCAADe
email pvarela@arq.up.pt
last changed 2022/06/07 07:54

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email jaworkshop@gmail.com
last changed 2023/10/22 12:06

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
doi https://doi.org/10.52842/conf.acadia.2021.270
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email niccolo.dambrosio@icd.uni-stuttgart.de
last changed 2023/10/22 12:06

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email hfog@kadk.dk
last changed 2022/06/07 07:51

_id acadia21_380
id acadia21_380
authors Huang, Zhenxiang; Chiang, Yu-Chou; Sabin, Jenny E.
year 2021
title Automating Bi-Stable Auxetic Patterns for Polyhedral Surface
doi https://doi.org/10.52842/conf.acadia.2021.380
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 380-391.
summary Bi-stable auxetic structures, a novel class of architected material systems that can transform bi-axially between two stable states, offers unique research interest for designing a deployable stable structural system. The switching behavior we discuss here relies on rotations around skewed hinges at vertex rotating connectors. Different arrangements of skewing hinges lead to different local curvatures.

This paper proposes a computational approach to design the self-interlocking pattern of a bi-stable auxetic system that can be switched between flat and desired curved states. We build an algorithm which takes a target synclastic polyhedral surface as input to generate the geometrical pattern with skewing hinges. Finally, we materialized prototypes to validate our proposed structures and to exhibit potential applications.

series ACADIA
type paper
email zh366@cornell.edu
last changed 2023/10/22 12:06

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email hemohamed@eng.zu.edu.eg
last changed 2022/06/07 07:50

_id acadia23_v1_208
id acadia23_v1_208
authors Hünkar, Ertunç; Lee, Dave
year 2023
title Enhancing Construction of Complex Compression-Based Structures through Holographic-Assisted Assembly
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 208-213.
summary Compression-based stacking (Figure 1) structures, including arches and cantilevers, have long been essential elements in architecture and engineering. However, their construction poses challenges, particularly when dealing with extreme cantilevers and arched spans. Traditional building methods often rely on glue or fasteners, which can be impractical or unsuitable for certain compression-based structures. Constructing such structures without support requires precise alignment and careful weight distribution. To address these challenges, holographic building techniques have emerged as a promising alternative to traditional methods (Lok, Samaniego, and Spencer, 2021). By projecting virtual geometry during the assembly process, these techniques enable greater precision in alignment and weight distribution, enhancing stability and structural integrity. This research explores the use of holographic building techniques to construct compression-based structures (Figure 2 through 5). Computational tools are employed to parameterize the mathematical problem and simulate the structures in a virtual environment, enabling testing and iteration of different design options (Figure 6 through 9) before physical construction.
series ACADIA
type project
email ehunkar@clemson.edu
last changed 2024/04/17 13:58

_id acadia21_502
id acadia21_502
authors Mytcul, Anna
year 2021
title ARchitect
doi https://doi.org/10.52842/conf.acadia.2021.502
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 502-511.
summary This research investigates gaming as a framework for design democratization in architecture, where the end user is the key decisionmaker in the design process. ARchitect is a multisensory game that promotes and explores the educational aspects of learning games and their influence on end user engagement with house co-design. This combinatorial game relies on an augmented reality (AR) application accessible through a smartphone, serving as a low-threshold tool for converting architectural drawings into 3D models in real time and using AR technology for design evaluation.

By allowing for learning through playing, ARchitect provides alternative ways of gaining knowledge about design and architecture and empowers non-experts to take active and informed positions in shaping their future urban environments on a micro-scale, rethinking conventional market relations and exploring emerging personal and public values. The ARchitect game challenges conventional participatory design where an architect plays an essential role in facilitation of the design process and translation of end users’ design proposals. In contrast, the proposed game system allows non-architect players to autonomously produce and access design solutions through embedded computational simulation by an AR application, thus giving an equal chance to non-professionals to express their design visions and become aware of potential implications of their ideas. By providing free access to the game contents through the ARchitect platform and a playful user experience by which design principles can be learned, this game will inspire the general public to engage in conversation about home design, eventually spreading architectural literacy to less-privileged communities.

series ACADIA
type paper
email annamytc@buffalo.edu
last changed 2023/10/22 12:06

_id ecaade2021_011
id ecaade2021_011
authors Nováková, Kateøina and Vele, Jiøí
year 2021
title Prvok - An experiment with 3D printing large doublecurved concrete structure
doi https://doi.org/10.52842/conf.ecaade.2021.2.137
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 137-144
summary In this experimental research project we report on the manufacturing process of the first full-size 3D printed concrete structure in our country. The house was 3D printed by an ABB IRB 6700 robot whose range we made fit with the requirements for transportation size and also, its range determined the size and geometry of the house. During the transformation process from sketch to code we involved students to apply computational design methods. We designed the main load bearing structure which had to be thinnest and lightest possible together with its insulation features and printability. We were aware of the world-wide research in this field started by NASA centennial Challenge called 3D-printed-habitat [Roman,2020] as well as start-ups derived from this research [1,2,3,4]. During the project, we investigated the following matters: (1) the relationship between geometry of the wall in model and in practice (2), setting of the robot and the mixture; and (3) stress test of the wall. With the results of the test we aimed at contribution to standardisation of 3D printed structures in ISO/ASTM 52939:2021. The finalized structure, named "Prvok", was made to prove printability of the mixture and stability of the design.
keywords 3D printing; robot; concrete; grasshopper; experiment; house
series eCAADe
email bruhokat@fa.cvut.cz
last changed 2022/06/07 07:58

_id acadia21_246
id acadia21_246
authors Safley, Nick
year 2021
title Reconnecting...
doi https://doi.org/10.52842/conf.acadia.2021.246
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 246-255.
summary This design research reimagines the architectural detail in a postdigital framework and proposes digital methods to work upon discrete tectonics. Drawing upon Marco Frascari's writing The Tell-the-Tale Detail, the study aims to reimagine tectonic thinking for focused attention after the digital turn. Today, computational tools are powerful enough to perform operations more similar to physical tools than in the earlier digital era. These tools create a "digital materiality," where architects can manipulate digital information in parallel and overlapping ways to physical corollaries. (Abrons and Fure, 2018) To date, work in this area has focused on materiality specifically. This project reinterprets tectonics using texture map editing and point cloud information, particularly reconceptualizing jointing using images. Smartphone-based 3D digital scanning was used to captured details from a series of Carlo Scarpa's influential works, isolating these details from their physical sites and focusing attention upon individual tectonic moments. As digital scans, these details problematize the rhetoric of smoothness and seamlessness prevalent in digital architecture as they are discretely construed loci yet composed of digital meshes. (Jones 2014) Once removed from their contexts, reconnecting the digital scans into compositions of "compound details" necessitated a series of new mechanisms for constructing and construing not native to the material world. Using Photoshop editing of texture-mapped images, digital texturing of meshes, and interpretation of the initial material constructions, new joints within and between these the digital scanned details were created to reframe the original detail for the post-digital.
series ACADIA
type paper
email rsafley@kent.edu
last changed 2023/10/22 12:06

_id ecaade2021_194
id ecaade2021_194
authors Scott, Jane, Gaston, Elizabeth and Agraviador, Armand
year 2021
title Configured Knitting - Grafting as an assembly process for knitted architecture
doi https://doi.org/10.52842/conf.ecaade.2021.2.473
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 473-482
summary There is a growing interest in knit as a material system for architectural research in a workflow that integrates computation and digital fabrication in the design and specification of highly engineered fabrics. However, the dimensional limitations of industrial machines mean that large scale work may require assembly from multiple pieces. Reconfiguring knitted fabric by joining fabric panels disrupts the performance of the material, challenging the computational model when fabric characteristics are transformed at the seams.The aim of this research is to evaluate the potential for grafting, a traditional joining method for knitted fabric, as an assembly technique for architectural scale knitted prototypes. The paper presents an overview of knitted loop geometry focusing on the impact of loop construction in textile joins. The paper presents experimental research conducted using unconventional off-machine techniques at two scales, demonstrating how grafting can be used to assemble 3D structures without compromising the integrity of the material. Findings highlight the significance of this technique and suggest how the work could translate to digital fabrication.
keywords Knit; Grafting; Computational Form Generation; Textile Design
series eCAADe
email jane.scott@newcastle.ac.uk
last changed 2022/06/07 07:56

_id ecaade2021_029
id ecaade2021_029
authors Shen, Yuhui, Wang, Likai, Zhang, Ran, Tong, Ziyu and Ji, Guohua
year 2021
title EvoMass + GH_Wind - An agile wind-driven building massing design optimization framework
doi https://doi.org/10.52842/conf.ecaade.2021.1.477
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 477-486
summary The complex interactive relationship between wind flow and building design poses a great challenge in architectural design. Recent research has been conducted to combine Computational Fluid Dynamics (CFD) and computational design optimization to solve the problem. However, due to the time-consuming simulation process and the assertion-oriented computational optimization application, such CFD-based design optimization frameworks are not easy to integrate with architects' early-stage design exploration. To address these issues, this paper proposes an agile wind-driven building massing design optimization framework incorporating EvoMass and GH_Wind in the Rhino-Grasshopper environment. EvoMass is an integrated evolutionary building massing design tool, and GH_Wind is a simulation tool embedded with a Fast Fluid Dynamics (FFD) solver. Combining these two tools allows for fast wind-driven design optimization, thereby enabling architects to apply it to early-stage design exploration. To demonstrate its efficacy, a case study is presented to illustrate how the proposed design optimization framework can provide architects with useful design information and, thereby, facilitate more performance-informed design for early-stage architectural design.
keywords building massing design; performance-based design; design exploration; wind-driven design; Fast Fluid Dynamics; design optimization
series eCAADe
email wang.likai@outlook.com
last changed 2022/06/07 07:56

_id ecaade2021_116
id ecaade2021_116
authors Zhao, Jiangyang, Lombardi, Davide, Chen, Hanmei and Agkathidis, Asterios
year 2021
title Reinterpretation of the Dougong Joint by the use of Parametric Tools and Robotic Fabrication Techniques
doi https://doi.org/10.52842/conf.ecaade.2021.2.233
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 233-242
summary Traditionally, Chinese architecture was based on the use of timber frameworks as structural system. The Dougong joint is amongst the typical connection typologies, widely applied in the timber heritage buildings in China. Each component of the Dougong (bucket-arch joint) conforms to a strict structural proportion in addition to simple but efficient connection methods between its different components. However, the spread of the structure in modern architecture is limited due to high labour cost. Parametric design and digital fabrication techniques have greatly promoted the development of complex timber structures in recent years, which could be introduced in order to reinterpret the Dougong joint. In continuation of our research on exploring the application of robotic technologies for the fabrication of traditional Chinese timber joints, our paper will investigate the feasibility of the structural logic of the Dougong and how it could be applied in a modern timber framework structure.
keywords Dougong joint; timber structures; parametric design; robotic fabrication; optimization algorithm; topology optimization
series eCAADe
email psjzha32@liverpool.ac.uk
last changed 2022/06/07 07:57

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email sherifmorad@aucegypt.edu
last changed 2021/08/09 13:13

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email aaadel@umich.edu
last changed 2023/10/22 12:06

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email mania.meibodi@gmail.com
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email akbariae@design.upenn.edu
last changed 2023/10/22 12:06

_id ecaade2021_130
id ecaade2021_130
authors Alassaf, Nancy and Clayton, Mark
year 2021
title The Use of Diagrammatic Reasoning to Aid Conceptual Design in Building Information Modeling (BIM)
doi https://doi.org/10.52842/conf.ecaade.2021.2.039
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 39-48
summary Architectural design is an intellectual activity where the architect moves from the abstract to the real. In this process, the abstract represents the logical reasoning of how architectural form is configured or structured, while the real refers to the final physical form. Diagrams become an integral part of the conceptual design stage because they mediate between those two realms. Building Information Modeling (BIM) can reallocate the effort and time to emphasize conceptual design. However, many consider BIM a professionally-oriented tool that is less suitable for the early design stages. This research suggests that architectural design reasoning can be achieved using constraint-based parametric diagrams to aid conceptual design in BIM. The study examines several techniques and constructs a framework to use diagrams in the early design stages. This framework has been investigated through Villa Stein and Citrohan House by Le Corbusier. This study addresses two roles of diagrams: the generative role to create various design solutions and the analytical one to conduct an early performance study of the building. Our research contributes to the discussion on the ways designers can use digital diagrams to support the architectural design process.
keywords Building Information Modeling (BIM); Performance analysis ; Architectural Form; Diagram; Parametric modeling
series eCAADe
email nancy.alassaf@yahoo.com
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_993653 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002