CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 165

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
doi https://doi.org/10.52842/conf.caadria.2021.1
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
doi https://doi.org/10.52842/conf.caadria.2021.2
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_235
id sigradi2021_235
authors Akcay Kavakoglu, Aysegul
year 2021
title Computational Aesthetics of Low Poly: [Re]Configuration of Form
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 17–28
summary Low-poly modeling as an emerging field in visual arts, product design and architecture has an essential effect both on the designer's and the viewer/user's experience. It has an advanced abstraction ability over the reconfiguration of form. This paper examines the visual features of low-poly form in terms of the computability of its aesthetics. A visual feature classification is made by referencing George David Birkhoff's aesthetic measure theory based on the complexity and order relationship. Topo[i]wall installation has been examined as a case study during the analysis. The relationship between form, computation, aesthetics and human-computer interaction are elaborated according to the results. It has been observed that low poly modeling offers a variation set in terms of compositional features, which are proportion, balance, vertical and horizontal network system while protecting its unity through the analysis of the generated computational model.
keywords computational aesthetics, low poly, form configuration, projection mapping, media art
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_399
id caadria2021_399
authors Alsalman, Osama, Erhan, Halil, Haas, Alyssa, Abuzuraiq, Ahmed M. and Zarei, Maryam
year 2021
title Design Analytics and Data-Driven Collaboration in Evaluating Alternatives
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 101-110
doi https://doi.org/10.52842/conf.caadria.2021.2.101
summary Evaluation of design ideas is an important task throughout the life cycle of design development in the AEC industry. It involves multiple stakeholders with diverse backgrounds and interests. However, there is limited computational support which through this collaboration is facilitated, in particular for projects that are complex. Current systems are either highly specialized for designers or configured for a particular purpose or design workflow overlooking other stakeholders' needs. We present our approach to motivating participatory and collaborative design decision-making on alternative solutions as early as possible in the design process. The main principle motivating our approach is giving the stakeholders the control over customizing the data presentation interfaces. We introduce our prototype system D-ART as a collection of customizable web interfaces supporting design data form and performance presentation, feedback input, design solutions comparisons, and feedback compiling and presentation. Finally, we started the evaluation of these interfaces through an expert evaluation process which generally reported positive results. Although the results are not conclusive, they hint towards the need for presenting and compiling feedback back to the designers which will be the main point of our future work.
keywords Design Analytics; Collaboration; Visualizations
series CAADRIA
email
last changed 2022/06/07 07:54

_id cdrf2021_92
id cdrf2021_92
authors Ana Zimbarg
year 2021
title Bio-Design Intelligence
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_9
summary Architecture has a substantial influence worldwide as it shapes our cities, and it is made to last. Urban areas are also responsible for 70% of the world’s carbon emissions. Consequently, architects are responsible for minimising the destructive effects of construction on the environment. How can biological intelligence be inserted in architecture as a possibility to increase environmental performance? Bio-design goes further than biology-inspired approaches. Biodesign refers to incorporating living organisms as an essential component of a system, changing the natural and built environment boundaries. It contains living and machine intelligence, whether embedded in the design process or in the building itself. This paper seeks to give an overview of bio-design and how it can be seen as a strategy of thinking of new research pathways.
series cdrf
email
last changed 2022/09/29 07:53

_id cdrf2021_231
id cdrf2021_231
authors Andrea Macruz, Ernesto Bueno, Gustavo G. Palma, Jaime Vega, Ricardo A. Palmieri, and Tan Chen Wu
year 2021
title Measuring Human Perception of Biophilically-Driven Design with Facial Micro-expressions Analysis and EEG Biosensor
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_22
summary This paper investigates the role technology and neuroscience play in aiding the design process and making meaningful connections between people and nature. Using two workshops as a vehicle, the team introduced advanced technologies and Quantified Self practices that allowed people to use neural data and pattern recognition as feedback for the design process. The objective is to find clues to natural elements of human perception that can inform the design to meet goals for well-being. A pattern network of geometric shapes that achieve a higher level of monitored meditation levels and point toward a positive emotional valence is proposed. By referencing biological forms found in nature, the workshops utilized an algorithmic process that explored how nature can influence architecture. To measure the impact, the team used FaceOSC for capture and an Artificial Neural Network for micro-expression recognition, and a MindWave sensor manufactured by NeuroSky, which documented the human response further. The methodology allowed us to establish a boundary logic, ranking geometric shapes that suggested positive emotions and a higher level of monitored meditation levels. The results pointed us to a deeper level of understanding relative to geometric shapes in design. They indicate a new way to predict how well-being factors can clarify and rationalize a more intuitive design process inspired by nature.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_225
id ecaade2021_225
authors Anishchenko, Maria and Paoletti, Ingrid
year 2021
title Yarn-Level Modeling of Non-Uniform Knitted Fabric for Digital Analysis of Textile Characteristics - From a bitmap to the yarn-level model
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 253-262
doi https://doi.org/10.52842/conf.ecaade.2021.1.253
summary Modern CNC weft knitting machines are capable to produce textiles with complex non-uniform structures and shapes in a single operation with minimum human intervention. The type of knit structure and the settings of the knitting machine significantly influence the fabric characteristics and its role in architectural comfort. However, there is still no open-access tool for fast and efficient analysis of textiles with consideration of their knit structure, especially if they are knitted non-uniformly. Moreover, the existing methodologies of digital modeling of the knit structure are not linked to the actual production of textiles on flat-bed knitting machines. This paper presents a tool that "reads" a bitmap image that can be as well imported into a knitting machine software and generates a yarn-level geometry of the knitted textiles, that can be further integrated into the behavior analysis software within the rhino-grasshopper environment. This methodology helps to preview and analyze knitted textiles before production and can help to optimize the programming of bespoke knitted textiles for large-scale architectural applications.
keywords knitting; computational knitting; digital simulation; textile characteristics; textiles for architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_085
id ecaade2021_085
authors Apolinarska, Aleksandra Anna, Kuhn, Mathias, Gramazio, Fabio and Kohler, Matthias
year 2021
title Performance-Driven Design of a Reciprocal Frame Canopy - Timber structure of the FutureTree
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 497-504
doi https://doi.org/10.52842/conf.ecaade.2021.1.497
summary This paper presents the design process of a recently built, 107 m2 free-form timber frame canopy. The structure is an irregular, funnel-shaped reciprocal frame resting on a central concrete column, and has been fabricated using a robot-based assembly process. The project addresses several known design and fabrication challenges: modelling of free-form reciprocal frames, complex interrelations between their geometry and structural behaviour, as well as develops custom software tools to represent different models and interface design and structural analysis environments. The performance-driven design is exemplified by studies on the relationship between geometric parameters of the reciprocal frame and the resulting force-flow and flexural stiffness of the structure. The final design is obtained by differentiating geometry and stiffness to reduce deflection and tensile stresses while observing fabrication constraints.The project demonstrates the application of computational design to create customized, performance-driven and robotically fabricated structures, and its successful realization validates the methods under real-life planning and construction conditions.
keywords Integrated computational design ; Performance-based design ; Reciprocal frames ; Timber structures; Robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2021_233
id caadria2021_233
authors Ascoli, Raphaël
year 2021
title Augmenting computational design agency in emerging economies
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 639-648
doi https://doi.org/10.52842/conf.caadria.2021.2.639
summary This /practice-based design research/ investigates the possibility of computational design to increase agency and impact in emerging economies through real-world projects. By cultivating a new kind of relationship to issues in development and local untapped resources, they inspire for more public engagement and resource-based conversations within a spatial framework. The topics that were addressed in this research are the democratization of data and affordability of construction. These two on-going early-stage initiatives have used computational design tools at specific areas in the projects development, therefore optimizing the parts where low-tech tools werent sufficient. This demand driven design process explores ways in which different levels of technology can augment each other.
keywords space; resource; housing; myanmar; optimization
series CAADRIA
email
last changed 2022/06/07 07:54

_id cdrf2021_359
id cdrf2021_359
authors Ayoub Lharchi, Mette Ramsgaard Thomsen, and Martin Tamke
year 2021
title Joint Descriptive Modeling (JDM) for Assembly-Aware Timber Structure Design
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_33
summary Joints design is an essential step in the process of designing timber structures. Complex architectural topologies require thorough planning and scheduling, as it is necessary to consider numerous factors such as structural stability, fabrication capabilities, and ease of assembly. This paper introduces a novel approach to timber joints design that embed both fabrication and assembly considerations within the same model to avoid mistakes that might cause delays and further expenses. We developed a workflow that allows us to identify the fundamental data to describe a given joint geometry, machine-independent fabrication procedures, and the assembly sequence. Based on this, we introduce a comprehensive descriptive language called Joint Descriptive Model (JDM) that leverages industry standards to convert a joint into a usable output for both fabrication and assembly simulations. Finally, we suggest a seed of a joint’s library with some common joints.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_222
id ecaade2021_222
authors Azambuja Varela, Pedro, Sousa, José Pedro and Silva Dias, Joana
year 2021
title Drawing-to-Factory Process - Using freehand drawing to drive robotic assembly of brick walls
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 189-194
doi https://doi.org/10.52842/conf.ecaade.2021.1.189
summary The developments of digital technology applied to architecture in the recent decades has allowed for direct communication from the studio to fabrication. However, this process is typically dependent on complicated computational processes, enlarging the distance from the benefits of the traditional drawing approaches employed by architects. This research intends to explore possibilities of reenacting the drawing as a means of computational generative design which feeds automated systems of construction. By using a Cobot directed by an algorithm which reads a simple drawn curve on paper, an automated brick wall is built, as demonstrated in two exhibitions. This mixed approach allows for technology in architectural design and construction to be more accessible to a wider audience, while blurring the boundaries between concept and materialization.
keywords robotic assembly; human-robot collaboration; non-standard structures; digital fabrication; computational design; interactive fabrication
series eCAADe
email
last changed 2022/06/07 07:54

_id cdrf2021_368
id cdrf2021_368
authors B. Bala Murali Kumar, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo
year 2021
title Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_34
summary The additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_110
id caadria2021_110
authors Bao, Ding Wen, Yan, Xin, Snooks, Roland and Xie, Yi Min
year 2021
title SwarmBESO: Multi-agent and evolutionary computational design based on the principles of structural performance
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 241-250
doi https://doi.org/10.52842/conf.caadria.2021.1.241
summary This paper posits a design approach that integrates multi-agent generative algorithms and structural topology optimisation to design intricate, structurally efficient forms. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency. Both multi-agent algorithms and Bi-directional evolutionary structural optimisation (BESO) (Huang and Xie 2010), are emerging techniques that have significant potential in the design of form and structure.This research proposes a structural behaviour feedback loop through encoding BESO structural rules within the logic of multi-agent algorithms. This hybridisation of topology optimisation and swarm intelligence, described here as SwarmBESO, is demonstrated through two simple structural models. The paper concludes by speculating on the potential of this approach for the design of intricate, complex structures and their potential realisation through additive manufacturing.
keywords Swarm Intelligence; Multi-agent; BESO (bi-directional evolutionary structural optimisation); Intricate Architectural Form; Efficient Structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_088
id caadria2021_088
authors Batalle Garcia, Anna, Cebeci, Irem Yagmur, Vargas Calvo, Roberto and Gordon, Matthew
year 2021
title Material (data) Intelligence - Towards a Circular Building Environment
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 361-370
doi https://doi.org/10.52842/conf.caadria.2021.1.361
summary The integration of repurposed material in new construction products generates resiliency strategies that diminish the dependency on raw resources and reduce the CO2 emissions produced by their extraction, transportation, and manufacturing. This research emphasizes the need to expand preliminary data collation from pre-demolition sites to inform early design decisions. Material (data) Intelligence investigates how the merging of artificial intelligence and data analysis could have a crucial impact on achieving widespread material reuse. The first step consists of automating the process of detecting materials and construction elements from pre-demolition sites through drone photography and computer vision. The second part of the research links the resulting database with a computational design tool that can be integrated into construction software. This paper strengthens the potential of circular material flows in a digital paradigm and exposes the capability for constructing big data sets of reusable materials, digitally available, for sharing and organizing material harvesting.
keywords computer vision; material database; automation; reclaimed material; digitalization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_241
id ecaade2021_241
authors Bitting, Selina, Azadi, Shervin and Nourian, Pirouz
year 2021
title Reconfigurable Domes - Computational design of dry-fit blocks for modular vaulting
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 263-274
doi https://doi.org/10.52842/conf.ecaade.2021.1.263
summary In contrast to the contemporary aesthetic account, Muqarnas are geometrically complex variations of Squinches used for structural integration of rectilinear geometries and curved geometries. Inspired by the historical functionality of Muqarnas, we present a generalized computational workflow for generating dry-fit stacking modules from two-dimensional patterns in order to construct a dome. Similar to Muqarnas these blocks are modular in nature, complex in geometry, and compression-only in their structural behavior. We demonstrate the design of such structures based on the exemplary Penrose pattern and showcase the variations & potentials of this method in comparison to conventional approaches.
keywords Muqarnas; Generative Design; Modular Design; Unreinforced Masonry Architecture; Penrose Tiling; Workflow Design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
doi https://doi.org/10.52842/conf.acadia.2021.318
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 8HOMELOGIN (you are user _anon_166682 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002