CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
doi https://doi.org/10.52842/conf.caadria.2021.1.051
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_404
id caadria2021_404
authors Kim, Jong Bum, Aman, Jayedi and Balakrishnan, Bimal
year 2021
title Forecasting performance of Smart Growth development with parametric BIM-based microclimate simulations
doi https://doi.org/10.52842/conf.caadria.2021.1.411
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 411-420
summary Smart Growth is a fast-growing urban design and planning movement developed by the United States Environmental Protection Agency (EPA). These regulations control urban morphologies such as building form, position, façade configurations, building materials, road configurations, which have an explicit association with the microclimate and outdoor comfort. This paper presents an urban modeling and simulation framework that can represent the urban morphology and its impact on microclimate shaped by Smart Growth. First, we created urban models using custom parametric objects and a building component library in BIM. Then we integrated parametric BIM and multiple performance simulations, including wind analysis, solar accessibility, and energy use. For implementation, a case study was carried out using two Smart Growth regulations in the Kansas City metropolitan area. The paper elaborates on the findings from simulation results, challenges in implementation, and limitations of the proposed framework to manage a large number of regulation variables in simulation.
keywords Smart Growth Regulations; Building Information Modeling (BIM); Parametric Simulation; Microclimate Simulation; Computational Fluid Dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_150
id ecaade2021_150
authors Song, Yanan and Yuan, Philip F.
year 2021
title A Research On Building Cluster Morphology Formation Based On Wind Environmental Performance And Deep Reinforcement Learning
doi https://doi.org/10.52842/conf.ecaade.2021.1.335
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 335-344
summary Nowadays, numerous researchers emphasize the significance of the environmen-tal performance-driven generative methodology. However, due to the complex coupling mechanism of environmental regulation factors, the existing optimiza-tion engines and applications are time-consuming and cumbersome. In this re-search, we propose a novel design methodology based on Deep Reinforcement Learning (DRL). This paper is divided into 3 sections, including theoretical framework, design strategy, and practical application. It first introduces an over-view of basic principles, illustrating the potential advantages of DRL in perfor-mance data-driven design. Based on this, the paper proposes a DRL-based gener-ative method. We point out a more specific discussion about the application and workflow of core DRL elements in architectural design. Finally, taking a grid-form urban space composed by multitude high-rise building blocks as an exam-ple, we present a application through a DRL agent to conduct numerous active wind environmental performance-based design tests. It is an interactive and gen-erative design method, owning multiple advantages of timeliness, convenience, and intelligence.
keywords Deep Reinforcement Learning; Environmental Performance Design; Generative Design; Building Cluster Formation
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2021_50
id sigradi2021_50
authors Albuquerque, Dilson and Andrade, Max
year 2021
title The Impacts of Collaboration and Cordination of Architectural and Engineering Projects Developed with BIM in Reducing Design Interferences
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 783–794
summary This paper addresses the importance and development of cultural transformations involving the design process in architecture and the advent of Building Information Modeling (BIM) in civil construction activities and how its implementation in a coordinated, collaborative and interoperable way contributes to a diagnosis of Clash Detection between diferentes design projects, before building construction, saving excessive costs and rework. Taking as its main reference the BIM Maturity Matrix of Succar (2009), the proposed BIM Project Integration Maturity Matrix contributes to the awareness of bringing designers and builders closer to design activities, to encourage the integration of design processes involving the building, to consolidate an environment of ease of communication between participants, the organization of documentation and, above all, prioritize the compatibility between projects to avoid conflicts, excess costs and rework, resulting in a higher quality of the final project.
keywords Coordenaçao de projetos, detecçao de interferencias, Building Information Modeling, matriz de avaliaçao, projeto integrado
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_194
id caadria2021_194
authors Sun, Chengyu, Li, MengTing and Jiang, Hanchen
year 2021
title Developing an Automatic Code Checking System for the Urban Planning Bureau of Huangpu District in Shanghai
doi https://doi.org/10.52842/conf.caadria.2021.1.291
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 291-300
summary As Chinese cities entering a so-called organic renewal era, building projects runs with much more constraints from high-density and high-rise surroundings. Such a situation makes the technical review in any urban planning bureau time-consuming and error-prone, which conflicts with the developers profits and citizens rights. This study introduces a preliminary system being developed for the planning bureau of Huangpu District, Shanghai. It has covered 21 code items among 44 computational ones of the local planning codes last year, which automatically generates technical reviews upon developers submissions. Due to the feasible level of BIM application in domestic projects, a set of strategic approaches, such as the standardization of CAD drawings and the reconstruction of an internal building information model, are adopted rather than developing the system on any BIM platform directly. Two examples of technical reviews about distance-checking between buildings and length-checking of facades are demonstrated, in which officers reached confidential judgments in seconds rather than several days conventionally.
keywords Planning Constraints; Code Checking; 3D Reconstruction; Design Automation; Building Information Model
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ecaade2021_130
id ecaade2021_130
authors Alassaf, Nancy and Clayton, Mark
year 2021
title The Use of Diagrammatic Reasoning to Aid Conceptual Design in Building Information Modeling (BIM)
doi https://doi.org/10.52842/conf.ecaade.2021.2.039
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 39-48
summary Architectural design is an intellectual activity where the architect moves from the abstract to the real. In this process, the abstract represents the logical reasoning of how architectural form is configured or structured, while the real refers to the final physical form. Diagrams become an integral part of the conceptual design stage because they mediate between those two realms. Building Information Modeling (BIM) can reallocate the effort and time to emphasize conceptual design. However, many consider BIM a professionally-oriented tool that is less suitable for the early design stages. This research suggests that architectural design reasoning can be achieved using constraint-based parametric diagrams to aid conceptual design in BIM. The study examines several techniques and constructs a framework to use diagrams in the early design stages. This framework has been investigated through Villa Stein and Citrohan House by Le Corbusier. This study addresses two roles of diagrams: the generative role to create various design solutions and the analytical one to conduct an early performance study of the building. Our research contributes to the discussion on the ways designers can use digital diagrams to support the architectural design process.
keywords Building Information Modeling (BIM); Performance analysis ; Architectural Form; Diagram; Parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2021_283
id sigradi2021_283
authors Alexandrino, Joao Victor Mota, Amorim, Leonardo Edson, Muniz, Vinícius Fernandes and Leite, Raquel Magalhaes
year 2021
title Architecture and Context: A Data-based Approach to Optimize Climate Performance of Built Facades
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1139–1150
summary The present research stems from a critical reflection about the environmental adaptability of existing building envelopes. The main goal is to explore how to balance environmental optimization with contextual constraints, using modularity, flexibility and mass customization as guiding principles. An application study was carried out with the development of a second skin proposal aligned with the use and context of the building under study. For this purpose, simulations that assess environmental conditions were developed within a visual programming tool, not only feeding the design process with essential information, but also providing a flexible creative process. Results show that such simulations allow the designer to interpret these studies more accurately, reducing the iterative guesswork, since in this workflow it is possible to transform these outputs into proposition parameters for new designs or interventions.
keywords Data-Driven Analysis, Optimization, Parametric Facade Design, Thermal performance, High-low architecture, Mass Customization, Second Skin
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2021_004
id ascaad2021_004
authors Ali, Nouran; Samir Hosny, Ahmed Abdin
year 2021
title Thermal Performance of Nanomaterials of a Medium Size Office Building Envelope: With a Special Reference to Hot Arid Climatic Zone of Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 385-396
summary Global warming is becoming a huge threat in the 21st century. The building is the main contributor to energy consumption and greenhouse gas emissions which play an important role in global warming. Using new technologies provides a step towards a better-built environment. Nanotechnology is an emerging technology that provides innovative materials that integrate with the building envelope to enhance energy efficiency and decrease energy consumption in buildings. Many Nano products are a promising candidate for building thermal insulation and increasing the building’s efficiency. This paper aims to reach minimum energy consumption by investigating Nanomaterials thermal performance on a building’s envelope in a hot arid climate. An office building in Cairo, Egypt is chosen as a case study. The paper presents an empirical/applied inquiry that is based on a computer simulation using Design Builder software. Energy consumption is calculated for different cases; the base model of the office building without using nanomaterials, and several nano models using nanomaterials. The results indicate that the use of Nanomaterials can enhance the thermal performance of the office building and save about 13.44 % of the annual energy consumption of the building.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_146
id ascaad2021_146
authors Aly, Zeyad; Aly Ibrahim, Sherif Abdelmohsen
year 2021
title Augmenting Passive Actuation of Hygromorphic Skins in Desert Climates: Learning from Thorny Devil Lizard Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 264-278
summary The exploitation of latent properties of natural materials such as wood in the passive actuation of adaptive building skins is of growing interest due to their added value as a low-cost and low-energy approach. The control of wood response behavior is typically conducted via physical experiments and numerical simulations that explore the impact of hygroscopic design parameters. Desert climates however suffer from water scarcity and high temperatures. Complementary mechanisms are needed to provide sufficient sources of water for effective hygroscopic operation. This paper aims to exploit such mechanisms, with specific focus on thorny devil lizard skins whose microstructure surface properties allow for maximum humidity absorption. We put forward that this process enhances hygroscopic-based passive actuation systems and their adaptation to both humidity and temperature in desert climates. Specific parameters and rules are deduced based on the lizard skin properties. Physical experiments are conducted to observe different actuation mechanisms. These mechanisms are recorded, and texture and bending morphologies are modeled for adaptive skins using Grasshopper.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_005
id caadria2021_005
authors Bedarf, Patrick, Martinez Schulte, Dinorah, Şenol, Ayça, Jeoffroy, Etienne and Dillenburger, Benjamin
year 2021
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel
doi https://doi.org/10.52842/conf.caadria.2021.1.603
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 603-612
summary This paper presents the design and fabrication of a lightweight composite facade shading panel using 3D printing (3DP) of mineral foams. Albeit their important role in industrial construction practice as insulators and lightweight materials, only little research has been conducted to use foams in 3DP. However, the recent development of highly porous mineral foams that are very suitable for extrusion printing opens a new chapter for development of geometrically complex lightweight building components with efficient formwork-free additive manufacturing processes. The work documented in this paper was based on preliminary material and fabrication development of a larger research endeavor and systematically explored designs for small interlocking foam modules. Furthermore, the robotic 3D Printing setup and subsequent processing parameters were tested in detail. Through extensive prototyping, the design space of a final demonstrator shading panel was mapped and refined. The design and fabrication process is documented and shows the potential of the novel material system in combination with fiber-reinforced ultra-high performance concrete (UHPC). The resulting composite shading panel highlights the benefits of using mineral foam 3DP to fabricate freeform stay-in-place formwork for lightweight facade applications. Furthermore, this paper discusses the challenges and limitations encountered during the project and gives a conclusive outlook for future research.
keywords robotic 3d-printing; mineral foam; lightweight construction; concrete formwork; facade shading panel
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2021_281
id sigradi2021_281
authors Bernal, Marcelo, Vegas, Gonzalo, Williams, Marvina and Andersen, Katie
year 2021
title Quantification of Effective Temporal Exposure to Daylight Illuminance Levels in Healthcare Settings
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 315–326
summary The purpose of this study is the quantification of the exposure of occupants to daylight illuminance levels. The case study is the typical floor of a patient tower occupied by nurses in twelve hours shifts, from 7 am to 7 pm. Significant evidence exists regarding the positive impact of access to daylight on staff outcomes in healthcare facilities in terms of reduction of stress, absenteeism, medication errors, and burn outs. However, the standard daylight simulation methods evaluate the building and do not capture the dynamic nature of people’s behavior while moving through the space. The proposed approach combines agent-based simulation and daylight performance analysis to compute the occupants’ exposure to daylight levels throughout the year. The results show the discrepancies between building-centric and human-centric types of analysis and the contribution of dynamic simulation methods to design occupancy schedules to warranty equitable access to daylight to building occupants.
keywords Event model, Building occupancy, Behavior modeling, Space-use analysis, Design tools
series SIGraDi
email
last changed 2022/05/23 12:10

_id caadria2021_136
id caadria2021_136
authors Carallo, Marinella
year 2021
title Office building design in Hong Kong Island through shape optimization
doi https://doi.org/10.52842/conf.caadria.2021.1.441
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 441-450
summary Dealing with crucial decision-making process has led to the development of many different methods of multicriteria assessments, especially optimization methodologies. This work is mainly focused on the integration of advanced computational design and digital methods, to design a complex building shape resulting in a performance-based approach through optimization methodologies. The project consists of the design of a skyscraper in Hong Kong Island made through parametrically controlled shape and evaluated respect to light and wind to reduce Urban Heat Island phenomena and enhance liveability. The aim is to find out a unique methodology that can be applied to different cases by making small adaptations regarding the parametrization and the parameters involved. The design is divided into two stages that need to arrange the methodology at different levels throughout the workflow. For this reason, it is mandatory to adapt inputs to the algorithm according to the goal. The result is a skyscraper placed in the financial district of Hong Kong, which has both the features of a Grade A Office building and can mitigate the UHI effect thanks to its particular and optimized shape.
keywords shape optimization; Computational design; Genetic Algorithm; UHI effect; ventilation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_326
id ecaade2021_326
authors Chan, Holly, Brown, Andre, Moleta, Tane and Schnabel, Marc Aurel
year 2021
title Augmented Spaces - If walls could talk
doi https://doi.org/10.52842/conf.ecaade.2021.2.575
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 575-584
summary This paper explores the development of Augmented Spaces that involve embedding within the built environment, digitally responsive recognition of human presence. Contemporary digital media provides the opportunity to enhance physical space with the property of immediate interaction, which results in a high level of user engagement and responsivenenss. Through the addition of digital media, emotional and reflective value can be added to the built form. If space is designed to be reactive, rather than passive, a dialogue can be established between the user/inhabitant and the environment. We report on the establishment and analysis of a set of prototype digital interventions in urban space that react to human presence. One is in a building threshold space; one an urban street. We describe the development of a digital particle system with two inputs; the first being the geometry that generates the particles and the second being the geometry that displaces the particles. The research goals that we report on are driven by three over-riding response criteria, Visceral, Behavioural and Reflective.
keywords augmented space; reactive; synesthetic
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
doi https://doi.org/10.52842/conf.acadia.2021.270
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_230
id ecaade2021_230
authors De Luca, Francesco, Sepúlveda, Abel and Varjas, Toivo
year 2021
title Static Shading Optimization for Glare Control and Daylight
doi https://doi.org/10.52842/conf.ecaade.2021.2.419
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 419-428
summary Daylight and solar access influence positively building occupants' wellbeing and students' learning performance. However, an excess of sunlight can harm the visual comfort of occupants through disturbing glare effects. This study investigated, through multi-objective optimization, the potential of static shading devices to reduce glare and to guarantee daylight provision in a university building. The results showed that the reduction of disturbing glare was up to more than twice the reduced daylight, which nevertheless, was provided in adequate levels. View out and energy performance were also analyzed. Detailed results of optimal shading types and classrooms layout indications are presented.
keywords Daylight; Visual comfort; Shading; Multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2021_092
id caadria2021_092
authors Dickey, Rachel
year 2021
title The Acoustic Pavilion - Prototyping Alternatives for Gypsum based Construction
doi https://doi.org/10.52842/conf.caadria.2021.1.523
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 523-532
summary Gypsum is one of the most commonly used building materials today and prevalent in architectural acoustics. However, despite its ubiquitous appropriation, few domains of research or practice seek to provide opportunistic approaches for its acoustical application. This paper outlines the computational design and fabrication processes for the development of a pavilion that explores alternative acoustic applications for gypsum. It demonstrates how sound performance can drive the conceptual agenda for a project by articulating the conditions of spatial experience through the design of architectural surface.
keywords fabrication; computational design; acoustics; reflective surfaces; diffusive surfaces
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_56
id sigradi2021_56
authors Duclos-Prevet, Claire, Guena, François and Effron, Mariano
year 2021
title Constrained Multi-Criteria Optimization for Integrated Design in Professional Practice
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 29–40
summary To design sustainable architecture, theory encourages architects to rely on automated exploration processes. In practice, the problems encountered are often multicriteria and under constraint. This paper compares different constraint handling strategies, approachable to designer, for processes involving evolutionary algorithms. Four methods are tested on a case study from professional practice. Two methods rely on parametric models: the penalty function method and the use of hyperparameters. The others involve the use of generative techniques: a rule-based method and a repair algorithm that takes the form of an agent-based model. This study highlights the significant impact of the choice of the constraint management method on exploration performance. Among other results, it appears that models involving the use of generative techniques are more efficient than those using parametric models. This calls for the development of dedicated tools.
keywords building enveloppe design, generative design, agent-based modeling, multiobjective genetic algorithm, daylighting simulation
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_055
id ascaad2021_055
authors El Hussainy, Mariam; Mohammed Mayhoub, Ahmed El Kordy
year 2021
title A Computational Approach for Optimizing the Daylighting Performance of Existing Buildings
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 69-83
summary Daylighting provision gives a significant contribution to the enhancement of the indoor visual environment and user comfort. This study aims to provide a methodology to assess and optimize daylighting performance in buildings. The paper utilizes simulation techniques for identifying the most efficient daylight performance by incorporating parametric optimization tools to enhance the daylighting performance of existing buildings. The developed workflow includes three consecutive phases. The first examines the daylighting performance of the existing building. The second phase is concerned with daylighting adequacy and the third aims to optimize the quality of light rather than just the quantity through the utilization of a simple shading system to parametrically investigate the effect of using different shading configurations on daylighting performance and to select the optimal solution. A louver system was parameterized according to a predefined process that associates its depth, count and rotation angle while a vertical screen was parametrized according to its scale and tilt angle. To examine the potentials of the proposed multi-stage method, it has been implemented on an office building located in new Cairo, Egypt. The results demonstrate that using the proposed optimization strategy drastically enhanced the Spatial Daylighting Autonomy of the building from 27% to 87% in comparison with the base case. Moreover, the optimum shading solution enhanced the daylighting quality by reducing the glare probability for better visual comfort from 60% to only 14%.
series ASCAAD
email
last changed 2021/08/09 13:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_929295 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002