CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 257

_id sigradi2021_235
id sigradi2021_235
authors Akcay Kavakoglu, Aysegul
year 2021
title Computational Aesthetics of Low Poly: [Re]Configuration of Form
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 17–28
summary Low-poly modeling as an emerging field in visual arts, product design and architecture has an essential effect both on the designer's and the viewer/user's experience. It has an advanced abstraction ability over the reconfiguration of form. This paper examines the visual features of low-poly form in terms of the computability of its aesthetics. A visual feature classification is made by referencing George David Birkhoff's aesthetic measure theory based on the complexity and order relationship. Topo[i]wall installation has been examined as a case study during the analysis. The relationship between form, computation, aesthetics and human-computer interaction are elaborated according to the results. It has been observed that low poly modeling offers a variation set in terms of compositional features, which are proportion, balance, vertical and horizontal network system while protecting its unity through the analysis of the generated computational model.
keywords computational aesthetics, low poly, form configuration, projection mapping, media art
series SIGraDi
email
last changed 2022/05/23 12:10

_id ecaade2021_130
id ecaade2021_130
authors Alassaf, Nancy and Clayton, Mark
year 2021
title The Use of Diagrammatic Reasoning to Aid Conceptual Design in Building Information Modeling (BIM)
doi https://doi.org/10.52842/conf.ecaade.2021.2.039
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 39-48
summary Architectural design is an intellectual activity where the architect moves from the abstract to the real. In this process, the abstract represents the logical reasoning of how architectural form is configured or structured, while the real refers to the final physical form. Diagrams become an integral part of the conceptual design stage because they mediate between those two realms. Building Information Modeling (BIM) can reallocate the effort and time to emphasize conceptual design. However, many consider BIM a professionally-oriented tool that is less suitable for the early design stages. This research suggests that architectural design reasoning can be achieved using constraint-based parametric diagrams to aid conceptual design in BIM. The study examines several techniques and constructs a framework to use diagrams in the early design stages. This framework has been investigated through Villa Stein and Citrohan House by Le Corbusier. This study addresses two roles of diagrams: the generative role to create various design solutions and the analytical one to conduct an early performance study of the building. Our research contributes to the discussion on the ways designers can use digital diagrams to support the architectural design process.
keywords Building Information Modeling (BIM); Performance analysis ; Architectural Form; Diagram; Parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_326
id ecaade2021_326
authors Chan, Holly, Brown, Andre, Moleta, Tane and Schnabel, Marc Aurel
year 2021
title Augmented Spaces - If walls could talk
doi https://doi.org/10.52842/conf.ecaade.2021.2.575
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 575-584
summary This paper explores the development of Augmented Spaces that involve embedding within the built environment, digitally responsive recognition of human presence. Contemporary digital media provides the opportunity to enhance physical space with the property of immediate interaction, which results in a high level of user engagement and responsivenenss. Through the addition of digital media, emotional and reflective value can be added to the built form. If space is designed to be reactive, rather than passive, a dialogue can be established between the user/inhabitant and the environment. We report on the establishment and analysis of a set of prototype digital interventions in urban space that react to human presence. One is in a building threshold space; one an urban street. We describe the development of a digital particle system with two inputs; the first being the geometry that generates the particles and the second being the geometry that displaces the particles. The research goals that we report on are driven by three over-riding response criteria, Visceral, Behavioural and Reflective.
keywords augmented space; reactive; synesthetic
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2021_069
id ascaad2021_069
authors Cheddadi, Aqil; Kensuke Hotta, Yasushi Ikeda
year 2021
title Exploring the Self-Organizing Structure of the Moroccan Medina: A Simulation Model for Generating Urban Form
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 672-685
summary This research explores the use of generative design and computational simulations in the exploration of urban compositions based on traditional urban forms from North Africa. Upon the examination of these urban settlements, we discuss the relationship between traditional urban form and generative urbanism theory. We investigate several factors that allow these self-generated urban tissues to be highly adaptive to social, spatial, and environmental change. Following this, we formulate guidelines to reinterpret some of the characteristics of these urban forms. Built on these features, the simulation seeks to explore the generation of abstract urban forms and their optimization. In this regard, this experiment utilizes 3D and parametric design tools (Rhinoceros 3D and Grasshopper) to define a generative urban simulation and optimization model. It explores the use of algorithmic design methodology in the definition and optimization of the generated urban form. For this purpose, grid-based operations with base modules are used in conjunction with introverted urban blocks. We employ evolutionary algorithms and Pareto front methodology to visualize and rank a multitude of optimized results that are evaluated using three different and conflicting design objectives: sun exposure, physical accessibility, and urban density. The results are ranked and analyzed by comparing the outcomes of these different objective functions. The result of this study shows that it is possible to allow a degree of diversification of a myriad of urban configurations with a generative form-finding algorithm while still maintaining a rather commendable adaptability to various design constraints in the case of high-density settings. In this research, it is anticipated that an algorithmic design model is a fitting contemporary solution that can simulate the philosophy of a design made without a designer and offer a wide range of objective-based spatial solutions. It sets the stage for a discussion about the relevance of reinterpreting traditional urban forms from north Africa by designing a generative model that allows for self-organization.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2021_109
id ecaade2021_109
authors Doumpioti, Christina and Huang, Jeffrey
year 2021
title Intensive Differences in Spatial Design - Reversing form-finding
doi https://doi.org/10.52842/conf.ecaade.2021.1.009
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 9-16
summary Drawing from the philosophy of science, 'intensive' qualities define differences in degree instead of 'extensive' ones that define additive quantities. More relevant to architecture, intensive differences can define transient boundaries such as warmness and coolness, dryness and moisture, light and shadow, or visual accessibility, to name a few.The question that serves as a starting point of this study is whether the attributes mentioned above can become form-giving agents during the design process and, therefore, whether they become fundamental parameters for the conceptualization and configuration of extensive spatial qualities. This question is explored using Generative Adversarial Networks and image-to-image translation. The dataset consists of two types of images; one consists of spatial configurations representing extensive attributes. The second set depicts intensive characteristics of visual accessibility. The study proposes a conceptual model and workflow that reverses form-finding and enables the design of environments through the specification of desired intensive attributes. Furthermore, it discusses the advantage of working with this method in search of architectural environments with embedded spatial experiences.
keywords Intensive Differences; Form-Finding; Isovist Simulation; conditional Generative Adversarial Networks (cGAN)
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2021_56
id sigradi2021_56
authors Duclos-Prevet, Claire, Guena, François and Effron, Mariano
year 2021
title Constrained Multi-Criteria Optimization for Integrated Design in Professional Practice
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 29–40
summary To design sustainable architecture, theory encourages architects to rely on automated exploration processes. In practice, the problems encountered are often multicriteria and under constraint. This paper compares different constraint handling strategies, approachable to designer, for processes involving evolutionary algorithms. Four methods are tested on a case study from professional practice. Two methods rely on parametric models: the penalty function method and the use of hyperparameters. The others involve the use of generative techniques: a rule-based method and a repair algorithm that takes the form of an agent-based model. This study highlights the significant impact of the choice of the constraint management method on exploration performance. Among other results, it appears that models involving the use of generative techniques are more efficient than those using parametric models. This calls for the development of dedicated tools.
keywords building enveloppe design, generative design, agent-based modeling, multiobjective genetic algorithm, daylighting simulation
series SIGraDi
email
last changed 2022/05/23 12:10

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_137
id caadria2021_137
authors Fattahi Tabasi, Saba, Alaghmandan, Matin and Rafizadeh, Hamid Reza
year 2021
title Simultaneous effect of form modifications and topology of the bracing system on the structural performance of timber high rise building - Introducing an innovative approach using parametric design
doi https://doi.org/10.52842/conf.caadria.2021.1.421
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 421-430
summary Topology optimization is a tool that minimizes the material consumption in a structure, while at the same time provides us design alternatives integrating architectural and structural engineering concepts. However, topology optimization is a structural engineering subject and its known methods are required professional knowledge of engineering to be used. In this article, the mutual effect of form modifications and topology of the bracing system in a 9-story timber exoskeleton high-rise building regarding the governing wind load and seismic load is examined. What differentiates this study from former ones and in fact its main purpose is introducing an innovative approach towards structural topology optimization using parametric design. In this innovative approach, the possibility of moving for each central node of bracing systems in defined ranges independently and the possibility of the existence or absence of each bracing member is provided. This parametric model will enable architects to optimize the topology of the structural elements which are part of their architectural design by themselves. The CMA-ES-algorithm-based optimization is done to minimize both total mass of structure per unit area and the horizontal displacement of the top floor. For modeling, optimizing cross-sections and structural analysis, Grasshopper and its plug-in called Karamba are utilized.
keywords Topology optimization; Form finding; Parametric design; Timber tall buildings; Exoskeleton structures
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_309
id caadria2021_309
authors Gao, Xiaoni, Guo, Xiangmin and Lo, Tiantian
year 2021
title Digital Infrastructure - A Potential Method for Rural Revitalization through Digitization of Rural Information
doi https://doi.org/10.52842/conf.caadria.2021.2.699
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 699-708
summary Rural revitalization is becoming a trend to improve the countrys economy. However, due to its remoteness and the infrastructure is not perfect, the village lacks the ability to attract young labor to some extent, reflecting the isolation of rural information. Thus, constructing rural information on digital infrastructure and breaking the barriers between urban and rural areas is based on a digital village and even intelligent village. This paper will discuss the potential of digitizing rural information, using digital information as a bridge between urban and rural areas, and connecting top-down and bottom-up stakeholders through a network or platform to promote rural cultural cognition and attract investment. The new form of rural development is a digital village that integrates rural information datas virtual interaction. The successful construction and promotion of digital villages will promote the revitalization of rural areas and data-driven development in the future information age.
keywords digital infrastructure; rural information; digital data; virtual interaction; digitization
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_311
id caadria2021_311
authors Gu, Xiangshu, Tian, Shulin, Zhang, Baihui, Tong, Ziyu and Gan, Jingwen
year 2021
title SECTIONMATRIX - Mapping Urban Form through Urban Sections
doi https://doi.org/10.52842/conf.caadria.2021.2.599
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 599-608
summary Most of the traditional studies on urban morphology are based on aerial views. However, the 2D plane model fails to describe the height information of buildings and the relation of buildings and the urban external space. An urban section is another map of an urban area. Through a series of continuous vertical urban slices, the city texture can be transformed into planar linear information containing height and width information. This paper proposes several indicators to describe a series of urban section slices and uses a three-dimensional coordinate mapping method Sectionmatrix to quantify and analyze the relation between the physical geometrical indicators and urban form from the section perspective. Through the case analysis of multiple residential blocks in Nanjing, China, the results showed that Sectionmatrix is convenient and efficient. Sectionmatrix relates the geometrical properties to the spatial characteristics of urban areas and provides a new way to classify, map and define building typologies. This new classification method reveals the tortuosity and complexity of residential blocks. By bridging the gap between quantity and form, the research also suggests other possible applications of Sectionmatrix as a control instrument and test framework for entire cities planning and design.
keywords Urban Morphology; Urban Section; Sectionmatrix; Quantitative Analysis
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2021_370
id caadria2021_370
authors Guo, Zhe, Li, Ce and Zhou, Yifan
year 2021
title The method of responsive shape design based on real-time interaction process
doi https://doi.org/10.52842/conf.caadria.2021.2.345
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 345-354
summary This project focuses on how real-time motion interaction caused by people could put potential drivers for parametric design innovation, which would enhance the link between form trigger and result. Begin with discussing of background in interactive digital design, this article starts from three aspects in turn. First, the shape generating method based on a mesh geometric data format is discussed, which is the precondition of this research. Then, several kinds of behavior interaction are selected to be the input data which directly or indirectly trigger and affect this responsive shape formation process mentioned in the former part. In the last part, this research will summarize and propose a complete set of interactive behavior-oriented responsive digital prototyping design and propose several corresponding application scenarios.
keywords mesh algorithm; actuated interaction design; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2021_103
id ecaade2021_103
authors Hussein, Hussein E. M., Agkathidis, Asterios and Kronenburg, Robert
year 2021
title Towards a Free-form Transformable Structure - A critical review for the attempts of developing reconfigurable structures that can deliver variable free-form geometries
doi https://doi.org/10.52842/conf.ecaade.2021.2.381
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 381-390
summary In continuation of our previous research (Hussein, et al., 2017), this paper examines the kinetic transformable spatial-bar structures that can alter their forms from any free-form geometry to another, which can be named as Free-form transformable structures (FFTS). Since 1994, some precedents have been proposed FFTS for many applications such as controlling solar gain, providing interactive kinetic forms, and control the users' movement within architectural/urban spaces. This research includes a comparative analysis and a critical review of eight FFTS precedents, which revealed some design and technical considerations, issues, and design and evaluation challenges due to the FFTS ability to deliver infinite unpredictable form variations. Additionally, this research presents our novel algorithmic framework to design and evaluate the infinite form variations of FFTS and an actuated prototype that achieved the required movement. The findings of this study revealed some significant design and technical challenges and limitations that require further research work.
keywords Kinetic transformable structures; finite element analysis; form-finding; deployable structures; Grasshopper 3D; Karamba 3D
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2021_404
id caadria2021_404
authors Kim, Jong Bum, Aman, Jayedi and Balakrishnan, Bimal
year 2021
title Forecasting performance of Smart Growth development with parametric BIM-based microclimate simulations
doi https://doi.org/10.52842/conf.caadria.2021.1.411
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 411-420
summary Smart Growth is a fast-growing urban design and planning movement developed by the United States Environmental Protection Agency (EPA). These regulations control urban morphologies such as building form, position, façade configurations, building materials, road configurations, which have an explicit association with the microclimate and outdoor comfort. This paper presents an urban modeling and simulation framework that can represent the urban morphology and its impact on microclimate shaped by Smart Growth. First, we created urban models using custom parametric objects and a building component library in BIM. Then we integrated parametric BIM and multiple performance simulations, including wind analysis, solar accessibility, and energy use. For implementation, a case study was carried out using two Smart Growth regulations in the Kansas City metropolitan area. The paper elaborates on the findings from simulation results, challenges in implementation, and limitations of the proposed framework to manage a large number of regulation variables in simulation.
keywords Smart Growth Regulations; Building Information Modeling (BIM); Parametric Simulation; Microclimate Simulation; Computational Fluid Dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_059
id ecaade2021_059
authors Lim, Ariel Cheng Sin and Thomsen, Mette Ramsgaard
year 2021
title Multi-Material Fabrication for Biodegradable Structures - Enabling the printing of porous mycelium composite structures
doi https://doi.org/10.52842/conf.ecaade.2021.1.085
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 85-94
summary Our awareness of the earth's depleting resources has directed focus towards biomaterials, which can be extracted sustainably and biodegraded after use. Current fabrication of biomaterial structures is still restricted in strength and geometry, limiting its use in construction. This paper presents a novel two-phase multi-material fabrication process to create mycelium composite structures of higher porosity and complexity with speculated improvements in strength. First, cellulose pulp inoculated with mycelium is extruded. Then, each layer is filled by a secondary supporting material. This material, in the form of a gravel- and sand-slurry, acts as an inhospitable medium steering mycelial growth, additionally improving aeration to produce stronger structures. After an intermediate growth period, the secondary material, reusable in a closed-loop production model, is removed to reveal the fully-grown mycelium structure. The paper reports on each of the three aspects: the fabrication process, material experimentation of primary and secondary substrates, as well as geometry of varying porosity and performance.
keywords biomaterials; mycelium; biodegradable structures; robotic fabrication; additive manufacturing
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_333
id caadria2021_333
authors Ma, Chun Yu, Chan, Yan Yu Jennifer and Crolla, Kristof
year 2021
title Expanding Bending-Active Bamboo Gridshell Structures' Design Solution Space Through Hybrid Assembly Systems
doi https://doi.org/10.52842/conf.caadria.2021.1.331
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 331-340
summary This paper discusses the development and testing of a novel design method for the low-tech construction of bending-active bamboo gridshell structures. It expands this typologys current design solution space by combining and building up on two common production methods for light-weight shell structures: 1) the lay-up method, typically used in bamboo architecture in which members are added one at a time, and 2) the flatbed method, in which a prefabricated equidistant flat grid without shear rigidity is propped up and deformed into its final doubly curved shape. The novel methodology expands the systems design solution space by incorporating singularities within the grid topology and by layering multiple separate grids. This allows for spatially radically different building geometries without loss of implementation workflow efficiency. A demonstrator design project, tested through a large-scale prototype model, is described to illustrate the possible spatially engaging architectural design opportunities presented by the novel approach.
keywords Bending-active structures; Bamboo architecture; Shell structures; Low-tech fabrication; Form finding
series CAADRIA
email
last changed 2022/06/07 07:59

_id cdrf2021_148
id cdrf2021_148
authors Mingxi Chen
year 2021
title Research on Epidemic Prevention and Management Measures in University Based on GIS and ABM – Taking South China University of Technology (Wushan Campus) as an Example
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_14
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Prevention and management of epidemic is a protracted war. As large community in city, universities are key regions in the anti-epidemic period. However, the current epidemic prevention and management measures in many universities do not compatible with the spatial form and the characteristics of the population, likely to lead to waste of resources and cause conflicts. The research simulates campus environment by constructing GIS model, and simulates the behavior of campus crowd by ABM. Under the coupling effect of the two, the real-time calculation of the spread of epidemic in universities can be calculated in real-time, making up for the deficiency of GIS model which can only do static data analysis. On this basis, research takes South China University of Technology as an example and assumes three epidemic prevention management measures, i.e. closed-off management, zoning management and self prevention, respectively to simulate the spread of the epidemic, sum up the results of different management measures and provide certain suggestions.
series cdrf
last changed 2022/09/29 07:53

_id sigradi2021_5
id sigradi2021_5
authors Ng, Provides, Fernandez, Alberto, Doria, David, Odaibat, Baha and Karastathi, Nikoletta
year 2021
title AI In+form: Intelligence and Aggregation for Solar Designs in the Built Environment
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 203–215
summary Designers are increasingly challenged by a constant change of context and the interaction of layers of data from a huge variety of sources, from natural-artificial to human-machine. This research aims at mapping the interrelations of energy problems, bio- and artificial intelligence, and human-machine interaction to reflect and rethink the future of solar design. This paper first discusses its theoretical approach that stands at the convergence of light-harvesting systems, their aggregation and intelligence. Afterwhich, this paper explores their translation into iterative processes between designer and artificial intelligences, which is defined as rule/agent-based and machine learning systems; in particular, the relationship between Cellular Automata, Genetic Algorithm, and Generative Adversarial Networks (GANs) is discussed. Finally, it introduces a design project - @R.E.Ar_ - showing the proposed combinatorial pipeline and some preliminary results.
keywords artificial intelligence, bio-inspired, solar design, Aggregation, human-machine interaction
series SIGraDi
email
last changed 2022/05/23 12:10

_id ijac202119313
id ijac202119313
authors Saldana Ochoa, Karla; Ohlbrock, Patrick Ole; D’Acunto, Pierluigi; Moosavi, Vahid
year 2021
title Beyond typologies, beyond optimization: Exploring novel structural forms at the interface of human and machine intelligence
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 466–490
summary This article presents a computer-aided design framework for the generation of non-standard structural forms in static equilibrium that takes advantage of the interaction between human and machine intelligence. The design framework relies on the implementation of a series of operations (generation, clustering, evaluation, selection, and regeneration) that allow to create multiple design options and to navigate in the design space according to objective and subjective criteria defined by the human designer. Through the interaction between human and machine intelligence, the machine can learn the nonlinear correlation between the design inputs and the design outputs preferred by the human designer and generate new options by itself. In addition, the machine can provide insights into the structural performance of the generated structural forms. Within the proposed framework, three main algorithms are used: Combinatorial Equilibrium Modeling for generating of structural forms in static equilibrium as design options, Self-Organizing Map for clustering the generated design options, and Gradient-Boosted Trees for classifying the design options. These algorithms are combined with the ability of human designers to evaluate non-quantifiable aspects of the design. To test the proposed framework in a real-world design scenario, the design of a stadium roof is presented as a case study.
keywords Structural design, machine learning, topology, graphic statics, form-finding, Combinatorial Equilibrium Modeling, Self-Organizing Map, Gradient-Boosted Trees
series journal
email
last changed 2024/04/17 14:29

_id ecaade2021_194
id ecaade2021_194
authors Scott, Jane, Gaston, Elizabeth and Agraviador, Armand
year 2021
title Configured Knitting - Grafting as an assembly process for knitted architecture
doi https://doi.org/10.52842/conf.ecaade.2021.2.473
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 473-482
summary There is a growing interest in knit as a material system for architectural research in a workflow that integrates computation and digital fabrication in the design and specification of highly engineered fabrics. However, the dimensional limitations of industrial machines mean that large scale work may require assembly from multiple pieces. Reconfiguring knitted fabric by joining fabric panels disrupts the performance of the material, challenging the computational model when fabric characteristics are transformed at the seams.The aim of this research is to evaluate the potential for grafting, a traditional joining method for knitted fabric, as an assembly technique for architectural scale knitted prototypes. The paper presents an overview of knitted loop geometry focusing on the impact of loop construction in textile joins. The paper presents experimental research conducted using unconventional off-machine techniques at two scales, demonstrating how grafting can be used to assemble 3D structures without compromising the integrity of the material. Findings highlight the significance of this technique and suggest how the work could translate to digital fabrication.
keywords Knit; Grafting; Computational Form Generation; Textile Design
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2021_221
id cdrf2021_221
authors Sijia Gu, Yue Lu, Yuwei Kong, Jiale Huang, and Weishun Xu
year 2021
title Diversifying Emotional Experience by Layered Interfaces in Affective Interactive Installations
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_21
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary This paper aims to improve users’ experience in affective interactive installations through the diversification of interfaces. With logically organized hierarchical experience, diverse interfaces with emotion data as inputs enhance users’ emotional interaction to be more natural and immersive. By using facial affect detection technology, an installation with diverse input interfaces was tested with an organic formal setting. Mechanical flowers and support structure based on the organic form were deployed as its physical output for a multitude of sensorial dimensions. With actions of the mechanical flowers, such as blooming, closing, rotating, glowing and blinking, a layered experiential sequence was created and the atmosphere of the installation was evaluated to be more engaging. In this way, the layered complexity of information was transferred to users’ immersive emotional experience. We believe that the practices in this work can contribute to deeper emotional engagement with users and add new layers of emotional interactivity.
series cdrf
email
last changed 2022/09/29 07:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 12HOMELOGIN (you are user _anon_463699 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002