CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id acadia21_346
id acadia21_346
authors Gordon, Matthew; Calvo, Roberto Vargas
year 2021
title Digital Deconstruction and Design Strategies from Demolition Waste
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 346-351.
doi https://doi.org/10.52842/conf.acadia.2021.346
summary The project develops pre- and post-demolition digital assessment protocols in order to better inform reclaimed material implementation in new projects. The application of the protocols are demonstrated in a pavilion constructed of reused timber (Figure 1). By facilitating the data capture, analysis, identification, and characterization of available secondary raw materials, and creating database systems for pre- and post-demolition sites, it promotes gains in high quality upcycled materials for new construction projects. Modern reality capture technologies allow for collecting high density and quality Construction and Demolition Waste (CDW) data, presenting the opportunity to also increase the reliability and trust in upcycled materials by data specifically structured to relevant actors.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ijac202119101
id ijac202119101
authors Budig, Michael; Oliver Heckmann, Markus, Hudert, Amanda Qi Boon Ng, Zack Xuereb Conti, and Clement Jun Hao Lork
year 2021
title Computational screening-LCA tools for early design stages
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 6–22
summary Life Cycle Assessment (LCA) has been widely adopted to identify the Global Warming Potential (GWP) in the construction industry and determine its high environmental impact through Greenhouse Gas (GHG) emissions, energy and resource consumptions. The consideration of LCA in the early stages of design is becoming increasingly important as a means to avoid costly changes at later stages of the project. However, typical LCA-based tools demand very detailed information about structural and material systems and thus become too laborious for designers in the conceptual stages, where such specifications are still loosely defined. In response, this paper presents a workflow for LCA-based evaluation where the selection of the construction system and material is kept open to compare the impacts of alternative design variants. We achieve this through a strict division into support and infill systems and a simplified visualization of a schematic floor layout using a shoebox approach, inspired from the energy modelling domain. The shoeboxes in our case are repeatable modules within a schematic floor plan layout, whose enclosures are defined by parametric 2D surfaces representing total ratios of permanent supports versus infill components. Thus, the assembly of modular surface enclosures simplifies the LCA evaluation process by avoiding the need to accurately specify the physical properties of each building component across the floor plan. The presented workflow facilitates the selection of alternative structural systems and materials for their comparison, and outputs the Global Warming Potential (GWP) in the form of an intuitive visualization output. The workflow for simplified evaluation is illustrated through a case study that compares the GWP for selected combinations of material choice and construction systems.
keywords Computational life cycle assessment tool, embodied carbon, parametric design, construction systems, global warming potential
series journal
email
last changed 2021/06/03 23:29

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
doi https://doi.org/10.52842/conf.acadia.2021.270
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_088
id caadria2021_088
authors Batalle Garcia, Anna, Cebeci, Irem Yagmur, Vargas Calvo, Roberto and Gordon, Matthew
year 2021
title Material (data) Intelligence - Towards a Circular Building Environment
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 361-370
doi https://doi.org/10.52842/conf.caadria.2021.1.361
summary The integration of repurposed material in new construction products generates resiliency strategies that diminish the dependency on raw resources and reduce the CO2 emissions produced by their extraction, transportation, and manufacturing. This research emphasizes the need to expand preliminary data collation from pre-demolition sites to inform early design decisions. Material (data) Intelligence investigates how the merging of artificial intelligence and data analysis could have a crucial impact on achieving widespread material reuse. The first step consists of automating the process of detecting materials and construction elements from pre-demolition sites through drone photography and computer vision. The second part of the research links the resulting database with a computational design tool that can be integrated into construction software. This paper strengthens the potential of circular material flows in a digital paradigm and exposes the capability for constructing big data sets of reusable materials, digitally available, for sharing and organizing material harvesting.
keywords computer vision; material database; automation; reclaimed material; digitalization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_178
id ecaade2021_178
authors Nicholas, Paul, Chiujdea, Ruxandra Stefania, Sonne, Konrad and Scaffidi, Antonio
year 2021
title Design and Fabrication Methodologies for Repurposing End of Life Metal via Robotic Incremental Sheet Metal Forming
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 171-180
doi https://doi.org/10.52842/conf.ecaade.2021.2.171
summary This paper investigates an integrative approach to robotic incremental sheet metal forming (RISF), which connects the registration of variable material properties and geometries to the re-forming of pre-made components beyond their initial formulations. Re-using rather than recycling metals can save the significant energy costs that come with having to melt, purify and re-manufacture products, as well as saving the costs of the new object it replaces. In this paper, we describe a workflow that connects 3d scanning, design automation and fabrication. The method goes beyond state of the art for RISF by challenging the assumption of starting from a flat unused sheet of metal, opening up the potential of RISF for material reuse. Our approach is demonstrated through the fabrication of a series of bench seating elements from oil drum geometries, however is generalisable to other input materials and output geometries. 3d scanning is used to register varying geometric features such as rolled beads, irregularities such as dents and holes, and material properties such as corrosion.
keywords robotic fabrication; re-use; upcycling; incremental sheet metal forming
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
doi https://doi.org/10.52842/conf.acadia.2021.318
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_400
id acadia21_400
authors Bruce, Mackenzie; Clune, Gabrielle; Xie, Ruxin; Mozaffari, Salma; Adel, Arash
year 2021
title Cocoon: 3D Printed Clay Formwork for Concrete Casting
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 400-409.
doi https://doi.org/10.52842/conf.acadia.2021.400
summary Concrete, a material widely used in the construction industry today for its low cost and considerable strength as a composite building material, allows designers to work with nearly any form imaginable; if the technology to build the formwork is possible. By combining two historic and widely used materials, clay and concrete, our proposed novel process, Cocoon, integrates robotic clay three-dimensional (3D) printing as the primary formwork and incrementally casting concrete into this formwork to fabricate nonstandard concrete elements. The incremental casting and printing process anchors the concrete and clay together, creating a symbiotic and harmonious relationship. The concrete’s fluidity takes shape from the 3D printed clay formwork, allowing the clay to gain structure from the concrete as it cures. As the clay loses moisture, the formwork begins to shrink, crack, and reveal the concrete below. This self-demolding process produces easily removable formwork that can then be recycled by adding water to rehydrate the clay creating a nearly zero-waste formwork. This technique outlines multiple novel design features for complex concrete structures, including extended height limit, integrated void space design, tolerable overhang, and practical solutions for clay deformation caused by the physical stress during the casting process. The novelty of the process created by 3D printing clay formwork using an industrial robotic arm allows for rapid and scalable production of nearly zero-waste customizable formwork. More significant research implications can impact the construction industry, integrating more sustainable ways to build, enabled by digital fabrication technologies.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_362
id acadia21_362
authors Bruscia, Nicholas
year 2021
title Surface Disclination Topology in Self-Reactive Shell Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 362-371.
doi https://doi.org/10.52842/conf.acadia.2021.362
summary This paper discusses recent developments on the geometric construction and fabrication techniques associated with large-scale surface disclinations. The basic concept of disclinations recognizes the role of “defects” in the composition of materials, the strategic placement of which shapes the material by inducing curvature from initially planar elements. By acknowledging the relationship between geometry and topology that governs disclination based form-finding and material prototyping, this work consciously explores its potential at the architectural scale. Basic geometric figures and their topological transformations are documented in the context of digital modeling and simulation, fabrication, and a specific material palette. Specifically, this work builds on recent efforts by focusing on three particular areas of investigation; a) enhancing the stability of surface disclinations with a synthetic fibrous layer, b) aggregation via periodic tilings, and c) harnessing snap-through buckling to increase bending stiffness in thin surfaces.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_013
id caadria2021_013
authors Haeusler, M. Hank, Butler, Andrew, Gardner, Nicole, Sepasgozar, Samad and Pan, Shan
year 2021
title Wasted ... Again - Or how to understand waste as a data problem and aiming to address the reduction of waste as a computational challenge
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 371-380
doi https://doi.org/10.52842/conf.caadria.2021.1.371
summary The global construction industry is the single largest consumer of materials on the planet. Of that material consumption anywhere between 10-20% will end up in landfills as waste. Currently, there are three approaches to tackle this problem - reduce, reuse, and recycle. Concentrating purely on the challenge of reducing waste this research aims to address the problem of waste in the construction industry by addressing it in the preliminary design stage. It does so by asking the research question if computational design offers opportunities towards lean construction or to achieve Zero Waste by understanding waste as a data management challenge. For our research materials are specified in databases outlining geometrical and quantitative information either in material supplier databases (homepage) or in architecture and construction databases via Revit or Grasshopper. Consequently, one can collect via web scraping, investigate via databases, inspect and compare via Grasshopper and Python these databases to understand if one can transform data into information towards material use and consequently into knowledge on waste production and reduction. This investigation, its proposed hypothesis, methodology, implications, significance, and evaluation are presented in the paper.
keywords Construction industry; waste reduction; databases; web scraping; computational design
series CAADRIA
email
last changed 2022/06/07 07:49

_id acadia21_280
id acadia21_280
authors Koleva, Denitsa; Özdemir, Eda; Tsiokou, Vaia; Dierichs, Karola
year 2021
title Designing Matter
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 280-291.
doi https://doi.org/10.52842/conf.acadia.2021.280
summary Autonomously shape-changing granular materials are investigated as architectural construction materials. They allow the embedding of different mechanical behaviors in the same material system through the design of their component particles. Granular materials are defined as large numbers of individual elements of larger than a micron. Because they are not bound to each other, only the contact forces act between them. The design of individual particles affects the behavior of a granular substance composed of such materials. The design process involves the definition of the form and materiality of the particle in relation to the desired function of the granular material. If shape-change materials are deployed in the making of the particles, the granular material can have more than one designed behavior, for example, both liquid and solid phases. Autonomously shape-changing granular materials have seldom been explored in either architecture or granular physics. Thus their exploration is both a relevant and a novel contribution to the field of granular architectures in specific and computational architectural design in general.

This article outlines the field of autonomously shape-changing granular materials and embeds them in the current state. Experimental and simulation methods for the development of shape-changing particles and granular materials are introduced. A case study on the development and testing of autonomously shape-changing particles made from a bimetal is also presented. Further research is outlined with respect to the practical, methodological, and conceptual development of an autonomously shape-changing designed granular material.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_308
id acadia21_308
authors Rossi, Gabriella; Chiujdea, Ruxandra; Colmo, Claudia; El Alami, Chada; Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2021
title A Material Monitoring Framework
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 308-317.
doi https://doi.org/10.52842/conf.acadia.2021.308
summary Through 3d printing, cellulose-based biopolymers undergo a two-staged hybrid fabrication process, where initial rapid forming is followed by a slower secondary stage of curing. During this curing large quantities of water are evaporated from the material which results in anisotropic deformations. In order to harness the potential of 3d printing biopolymers for architectural applications, it is necessary to understand this extended timeline of material activity and its implications on critical architectural factors related to overall element shrinkage, positional change of joints, and overall assembly tolerance. This paper presents a flexible multi-modal sensing framework for the understanding of complex material behavior of 3d printed cellulose biopolymers during their transient curing process.

We report on the building of a Sensor Rig, that interfaces multiple aspects of the curing of our cellulose-slurry print experiments, using a mix of image-based, marker-based, and pin-based protocols for data collection. Our method uses timestamps as a common parameter to interface various modes of curing monitoring through multi-dimensional time slices. In this way, we are able to uncover underlying correlations and affects between the different phenomena occuring during curing. We report on the developed data pipelines enabling the Monitoring Framework and its associated software and hardware implementation. Through graphical Exploratory Data Analysis (EDA) of 3 print experiments, we demonstrate that geometry is the main driver for behavior control. This finding is key to future architectural-scale explorations.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_470
id acadia21_470
authors £ochnicki, Grzegorz; Kalousdian, Nicolas Kubail; Leder, Samuel; Maierhofer, Mathias; Wood, Dylan; Menges, Achim
year 2021
title Co-Designing Material-Robot Construction Behaviors
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 470-479.
doi https://doi.org/10.52842/conf.acadia.2021.470
summary This paper presents research on designing distributed, robotic construction systems in which robots are taught construction behaviors relative to the elastic bending of natural building materials. Using this behavioral relationship as a driver, the robotic system is developed to deal with the unpredictability of natural materials in construction and further to engage their dynamic characteristics as methods of locomotion and manipulation during the assembly of actively bent structures. Such an approach has the potential to unlock robotic building practice with rapid-renewable materials, whose short crop cycles and small carbon footprints make them particularly important inroads to sustainable construction. The research is conducted through an initial case study in which a mobile robot learns a control policy for elastically bending bamboo bundles into designed configurations using deep reinforcement learning algorithms. This policy is utilized in the process of designing relevant structures, and for the in-situ assembly of these designs. These concepts are further investigated through the co-design and physical prototyping of a mobile robot and the construction of bundled bamboo structures.

This research demonstrates a shift from an approach of absolute control and predictability to behavior-based methods of assembly. With this, materials and processes that are often considered too labor-intensive or unpredictable can be reintroduced. This reintroduction leads to new insights in architectural design and construction, where design outcome is uniquely tied to the building material and its assembly logic. This highly material-driven approach sets the stage for developing an effective, sustainable, light-touch method of building using natural materials.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac202119201
id ijac202119201
authors Gumuskaya, Gizem
year 2021
title Multimaterial bioprinting—minus the printer: Synthetic bacterial patterning with UV-responsive genetic circuits
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 121–141
summary In this paper, we argue that synthetic biology can help us employ living systems’ unique capacity for self-construction and biomaterial production toward developing novel architectural fabrication paradigms, in which both the raw material production and its refinement into a target structure can be merged into a single computational process embedded in the living structure itself. To demonstrate, here we introduce bioPheme, a novel biofabrication method for engineering bacteria to build biomaterial(s) of designer’s choice into arbitrary 2D geometries specified via transient UV tracing. To this end, we present the design, construction, and testing of the enabling synthetic DNA circuit, which, once inserted into a bacterial colony, allows the bacteria to execute spatial computation by interacting with one another based on the if-then rules encoded in this circuit. At the heart of this genetic circuit is a pair of UV sensor – actuator, and a pair of cell-to-cell signal transmitter – receptor modules, created with genes extracted from the virus ? Phage and marine bacterium Vibrio fischeri, respectively. These modules are wired together to help designers engineer bacteria to build macro-scale structures with seamlessly integrated biomaterials, thereby bridge the molecular and architectural scales. In this way, a bacterial lawn can be programmed to produce different objects with complementary biomaterial compositions, such as a biomineralized superstructure and an elastic tissue filling in-between. In summary, this paper focuses on how scientists’ increasing ability to harness the innate computational capacity of living cells can help designers create self-constructing structures for architectural biofabrication. Through the discussions in this paper, we aim to initiate a shift in today’s biodesign practices toward a greater appreciation and adoption of bottom-up governance of living structures. We are confident that such a paradigm shift will allow for more efficient and sustainable biofabrication systems in the 4th industrial revolution and beyond.
keywords Synthetic biology, architecture, optogenetics, design computation, genetic circuits, biofabrication, synthetic morphogenesis, computational fabrication, architectural fabrication, biodesign
series journal
email
last changed 2024/04/17 14:29

_id ecaade2024_361
id ecaade2024_361
authors Sochùrková, Petra; Devyatkina, Svetlana; Kordová, Sára; Vaško, Imrich; Tsikoliya, Shota
year 2024
title Bioreceptive Parameters for Additive Manufacturing of Clay based Composites
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 45–54
doi https://doi.org/10.52842/conf.ecaade.2024.1.045
summary Due to climate change and the problematic amount of waste and CO2 emissions in the construction industry, non-human organisms and sustainable solutions are key motivators of the study. This paper focuses on developing a bioreceptive (Guillitte, 1995) composite suitable for additive manufacturing, composed to support growth of various organisms. It investigates key properties which have shown to be beneficial for promoting biological growth, such as water absorption, water permeability, humidity, and surface texture. The study evaluates the effect of two groups of clay-based waste additives, wooden sawdust (Arslan, et al., 2021) and sediment material sourced from local tunnel excavation in Prague. Simultaneously the need for intelligent reintegration and waste use is prevalent. Additive fabrication offers the ability to test a variety of composites and (re-)integrate them into the manufacturing processes. Current approach explores how to design artificial environments/skins for greenery and small life with the potential to improve both diversity and survivability while maintaining a better climate in its immediate surroundings. Bioreceptive design has the potential to improve the quality of the urban environment and bring new aesthetic influences into it (Cruz and Beckett 2016, p. 51-64).
keywords Digital Design, Material Research, Bioreceptive Design, Robotic Fabrication, Additive Manufacturing, Experimental Pastes, Bio compatibility, Waste Materials, Clay Composites
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2021_047
id ecaade2021_047
authors Zhang, Xiao, Yuan, Chao, Yang, Liu, Yu, Peiran, Ma, Yiwen, Qiu, Song, Guo, Zhe and Yuan, Philip F.
year 2021
title Design and Fabrication of Formwork for Shell Structures Based on 3D-printing Technology
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 487-496
doi https://doi.org/10.52842/conf.ecaade.2021.1.487
summary Shell structure is a kind of structure using a small amount of materials to obtain a large-span multi-functional space. However, lots of formwork and scaffold materials are often wasted in the construction process. This paper focuses on the shell structure construction using robotic 3D printing PLA (an environmental friendly material) technology as the background. The author explores the possibility of 3D printing technology in shell construction from small scale models in different construction method, and gradually optimizes the shell template shape suitable for PLA material in full-scale construction. Finally, the research team chose the bending-active 3D printing type and completed the construction of three full-scale concrete shell molds. Under the guidance of professor Philippe Block, the research team finished the final 3D printing mold with optimized slicing and bending logic and successfully used it as the template mold to carry the tiles which proved the feasibility of this construction method.
keywords Shell structure ; Formwork ; Geometric analysis; Form-finding; 3d printing
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_291
id caadria2021_291
authors Bansal, Medha and Erdine, Elif
year 2021
title Bio-Mineralisation And In-Situ Fabrication Of In-Dune Spaces: Case Study Of Thar Desert
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 493-502
doi https://doi.org/10.52842/conf.caadria.2021.1.493
summary Desertification has made large productive landscapes in the South-west Thar desert redundant, subjected people to migration and induced a constant influx of sand into the region (Singhvi and Amal, 2014). The abundance of sand creates an opportunity to adopt an existing technique, Bio-mineralisation, to develop a sand based composite material which, when treated with a construction binder like sodium alginate, can be used for engineering purposes. The paper sets a theoretical framework to develop a fabrication mechanism with microbial-grout injections and propose the development of in-dune/underground assembly of habitable spaces. Each of the sub-components of material system, fabrication mechanism and In-dune structures are detailed, and evaluated to devise a hierarchy between them. Their interdependencies together inform design strategies, a phasing plan and global time scale for overall terrain transformation.
keywords Bio-mineralisation; Bio-grouting; In-dune fabrication; Tool path algorithms; Micro-climate analysis
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_392
id acadia21_392
authors Carlow, Jason
year 2021
title Al Janah Pavilion
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 392-397.
doi https://doi.org/10.52842/conf.acadia.2021.392
summary This pavilion project was built as an outcome of an undergraduate design studio and design practicum at the American University of Sharjah in the UAE. The research methodology for the studio included case studies of various traditional building types to understand how traditional architecture in the MENA (Middle East and North Africa) region has been intelligently shaped by desert climate and Islamic culture over hundreds of years. Understanding and analysis of the precedent projects helped students to formulate climatic, structural, and material strategies for their design endeavors. Of the thirteen conceptual building envelopes developed by thirteen students in the design studio, the Al Janah scheme was chosen for development and construction.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_232
id acadia21_232
authors Goepel, Garvin; Crolla, Kristof
year 2021
title Augmented Feedback
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 232-237.
doi https://doi.org/10.52842/conf.acadia.2021.232
summary Augmented Reality (AR) has the potential to create a paradigm shift in the production of architecture.

This paper discusses the assembly and evaluation of a bamboo prototype installation aided by holographic instructions. The case study is situated within the framework of AR-driven computational design implementation methods that incorporate feedback loops between the as-built and the digital model.

The prototype construction aims to contribute to the ongoing international debate on architectural applications of digital technology and computational design tools and on the impact these have on craftsmanship and architecture fabrication. The case study uses AR-aided construction techniques to augment existing bamboo craftsmanship in order to expand its practically feasible design solution space. Participating laypersons were challenged to work at the interface of technology and material culture and engage with both latest AR systems and century-old bamboo craft.

This paper reflects on how AR tracking can be used to create a constant feedback loop between as-built installations and digitally designed source models and how this allows for the real-time assessment of design fidelity and deviations. The case study illustrates that this is especially advantageous when working with naturally varying materials, like bamboo, whose properties and behaviour cannot straightforwardly be accurately simulated digitally.

The paper concludes by discussing how augmented feedback loops within the fabrication cycle can facilitate real-time refinement of digital simulation tools with the potential to save time, cost, and material. The augmentation of onsite available skills facilitates the democratisation of non-standard architecture design production.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_87175 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002