CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id acadia21_512
id acadia21_512
authors Liu, Zidong
year 2021
title Topological Networks Using a Sequential Method
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 512-519.
doi https://doi.org/10.52842/conf.acadia.2021.512
summary The paper shares preliminary results of a novel sequential method to expand existing topology-based generative design. The approach is applied to building an interactive community design system based on a mobile interface. In the process of building an interactive design system, one of the core problems is to harness the complex topological network formed by user demands. After decades of graph theory research in architecture, a consensus on self-organized complex networks has emerged. However, how to convert input complex topological data into spatial layouts in generative designs is still a difficult problem worth exploring. The paper proposes a way to simplify the problem: in some cases, the spatial network of buildings can be approximated as a collection of sequences based on circulation analysis. In the process of network serialization, the personalized user demands are transformed into activity patterns and further into serial spaces. This network operation gives architects more room to play with their work. Rather than just designing an algorithm that directly translates users’ demands into shape, architects can be more actively involved in organizing spatial networks by setting up a catalogue of activity patterns of the residents, thus contributing to a certain balance of top-down order and bottom-up richness in the project. The research on data serialization lays a solid foundation for the future exploration of Recurrent Neural Network (RNN) applied to generative design.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_104
id caadria2021_104
authors Wu, Yihao, Wu, Liuqing and Li, Danrui
year 2021
title Quantification and Typology Methods for Spatial Regionalism - From Traditional Residence to Modern Chinese-style House Design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 81-90
doi https://doi.org/10.52842/conf.caadria.2021.2.081
summary The cognition of Regionalism in architecture has transferred from the surface to the essence, from the building appearance to space. Modern Chinese-style houses have sprung up all over the country these years but always fail to find back the main characteristic of space in traditional residences. Therefore, the paper focuses on the question of 'what are the main features of the space in traditional Chinese residence', proposing 5 spatial quantification indexes for residential space and a score evaluation method to measure Chinese-style matching degree (Mch) with the help of a modified graph map generation method. 10 traditional Chinese houses and 16 built-up modern Chinese-style houses are taken as samples for empirical research. The paper also puts forward a hypothesis testing model for architects, which can quickly check the Chinese-style matching degree of the scheme and strongly support the design process.
keywords spatial regionalism; spatial quantification; Chinese-style matching degree; typology; traditional Chinese residence
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_160
id caadria2021_160
authors Ding, Jie and Xiang, Ke
year 2021
title The influence of spatial geometric parameters of Glazed-atrium on office building energy consumption in the hot summer-warm winter region of China
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 391-400
doi https://doi.org/10.52842/conf.caadria.2021.1.391
summary To investigate the influence of the spatial geometric parameters of glazed-atrium on building energy consumption, this study established a prototypical office building model in the hot summer-warm winter region in China, and simulated the effect of energy consumption of six selected factors based on orthogonal experimental design (OED). Through the statistical analysis, the results showed that the floor height and the skylight-roof ratio were the most important parameters affecting the total energy consumption, with the contribution rates of 55.5% and 18.2%, followed by the section shape parameter and the plane orientation. In addition, the floor height and the section shape parameter were closely related to the cooling load and the lighting load, respectively, and both energy consumption could be reduced to a lower degree when the atrium inner interface window-wall ratio was 60%. Finally, the optimized parameter combination and energy-saving design strategies were proposed. This study provides architects with a simplified energy evaluation of atrium spatial geometric parameters in the early design stage, and it has an important guiding significance for the sustainable development of office buildings in the future.
keywords Energy consumption; Spatial geometric factors; Glazed atrium; Office building; Hot summer–warm winter region
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.2.131
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_376
id caadria2021_376
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2021
title Topology Generated Non-Fungible Tokens - Blockchain as infrastructure for a circular economy in architectural design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 151-160
doi https://doi.org/10.52842/conf.caadria.2021.2.151
summary The paper presents a new digital infrastructure layer for buildings and architectural assets. The infrastructure layer consists of a combination of topology graphs secured on a decentralised ledger. The topology graphs organise non-fungible digital tokens which each represent and correspond to building components, and in the root of the graph to the building itself.The paper presents background research in the relationship of building representation in the form of graphs with topology, of both manifold and non manifold nature. In parallel we present and analyse the relationship between digital representation and physical manifestation of a building, and back again. Within the digital representations the paper analyses the securing and saving of information on decentralised ledger technologies (such as blockchain). We then present a simple sample of generating and registering a non-manifold topology graph on the Ethereum blockchain as an EC721 token, i.e. a digital object that is unique, all through the use of dynamo and python scripting connected with a smart contract on the Ethereum blockchain. Ownership of this token can then be transferred on the blockchain smart contracts. The paper concludes with a discussion of the possibilities that this integration brings in terms of material passports and a circular economy and smart contracts as an infrastructure for whole-lifecycle BIM and digitally encapsulates of value in architectural designPlease write your abstract here by clicking this paragraph.
keywords Blockchain; Tokenisation; Topology; Circular Economy; decentralisation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_254
id ecaade2021_254
authors Eisenstadt, Viktor, Arora, Hardik, Ziegler, Christoph, Bielski, Jessica, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Comparative Evaluation of Tensor-based Data Representations for Deep Learning Methods in Architecture
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 45-54
doi https://doi.org/10.52842/conf.ecaade.2021.1.045
summary This paper presents an extended evaluation of tensor-based representations of graph-based architectural room configurations. This experiment is a continuation of examination of recognition of semantic architectural features by contemporary standard deep learning methods. The main aim of this evaluation is to investigate how the deep learning models trained using the relation tensors as data representation means perform on data not available in the training dataset. Using a straightforward classification task, stepwise modifications of the original training dataset and manually created spatial configurations were fed into the models to measure their prediction quality. We hypothesized that the modifications that influence the class label will not decrease this quality, however, this was not confirmed and most likely the latent non-class defining features make up the class for the model. Under specific circumstances, the prediction quality still remained high for the winning relation tensor type.
keywords Deep Learning; Spatial Configuration; Semantic Building Fingerprint
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2021_072
id ecaade2021_072
authors Jarzyna, Micha³
year 2021
title Finding Optimal Path Planning Method for Building Navigation in BIM
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 31-38
doi https://doi.org/10.52842/conf.ecaade.2021.2.031
summary Building's spatial structure described in a BIM model can be used for retrieving the information required for determining the shortest path within the building. The matrix method and the visibility method are the two main ways of dividing space into prime factors. Both are widely used to find the shortest path. In order to compare the performance of both methods, several tests were carried out with various versions of the floorplan modification (room area, the surface of internal walls, distance between the entrance, and exit in a straight line and within the boundary marked by walls of the maze). The results revealed significant differences between the visibility graph and the matrix method.
keywords BIM; Building information modeling; Facility management; FM; Routing in building
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2021_166
id caadria2021_166
authors Hu, Wei
year 2021
title The experiment of neural network on the cognition of style
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 61-70
doi https://doi.org/10.52842/conf.caadria.2021.2.061
summary This paper introduces a method to obtain quantified style description vector which is for computer analysis input by using image style classification task. In the experiment, 3331 architectural photos of three styles obtained by crawling and filtering were used as training data. A deep convolutional neural network was trained to map architectural images to high-dimensional feature space, and then the high-dimensional style description vector was used to output the measurement results of style cognition with fully connected neural network. Tested by test data-set of 371 architectural pictures, the accuracy rate of style cognition reached more than 80%. The neural network using architectural data training was applied to the style cognition of non-architectural objects, high accuracy rate was also achieved, it proved that this quantified style description vector did include the information about style cognition to some extent instead of simply classification. Finally, the similarities and differences between the cognitive characteristics of style of neural network and human beings are investigated.
keywords deep neural network; style cognition experiment; eye tracker
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2021_004
id ascaad2021_004
authors Ali, Nouran; Samir Hosny, Ahmed Abdin
year 2021
title Thermal Performance of Nanomaterials of a Medium Size Office Building Envelope: With a Special Reference to Hot Arid Climatic Zone of Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 385-396
summary Global warming is becoming a huge threat in the 21st century. The building is the main contributor to energy consumption and greenhouse gas emissions which play an important role in global warming. Using new technologies provides a step towards a better-built environment. Nanotechnology is an emerging technology that provides innovative materials that integrate with the building envelope to enhance energy efficiency and decrease energy consumption in buildings. Many Nano products are a promising candidate for building thermal insulation and increasing the building’s efficiency. This paper aims to reach minimum energy consumption by investigating Nanomaterials thermal performance on a building’s envelope in a hot arid climate. An office building in Cairo, Egypt is chosen as a case study. The paper presents an empirical/applied inquiry that is based on a computer simulation using Design Builder software. Energy consumption is calculated for different cases; the base model of the office building without using nanomaterials, and several nano models using nanomaterials. The results indicate that the use of Nanomaterials can enhance the thermal performance of the office building and save about 13.44 % of the annual energy consumption of the building.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_29
id sigradi2021_29
authors Delgado, Maria and Collins, Jeffrey
year 2021
title Otavalo Textile Grammar: Patterns and Dialogues
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 669–683
summary This paper focuses on the woven textiles of Otavalo, Ecuador, as a case study for improved cultural representation in architectural design. A shape grammar methodology is used to identify specific geometry and elucidate relationship rules found in existing artifacts. These geometry and relationships are subsequently used to produce patterns; both replicas of traditional tapestries as well as new configurations. Extending from 2D to 3D and from digital to physical, sets of modular prototypes are developed based on patterns produced using the defined Otavalo Textile Grammar. Model parts are supplied to study participants; new building blocks for architecture as a spatial and social undertaking.
keywords maker culture, design computation, shape grammars, digital craft
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_137
id caadria2021_137
authors Fattahi Tabasi, Saba, Alaghmandan, Matin and Rafizadeh, Hamid Reza
year 2021
title Simultaneous effect of form modifications and topology of the bracing system on the structural performance of timber high rise building - Introducing an innovative approach using parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 421-430
doi https://doi.org/10.52842/conf.caadria.2021.1.421
summary Topology optimization is a tool that minimizes the material consumption in a structure, while at the same time provides us design alternatives integrating architectural and structural engineering concepts. However, topology optimization is a structural engineering subject and its known methods are required professional knowledge of engineering to be used. In this article, the mutual effect of form modifications and topology of the bracing system in a 9-story timber exoskeleton high-rise building regarding the governing wind load and seismic load is examined. What differentiates this study from former ones and in fact its main purpose is introducing an innovative approach towards structural topology optimization using parametric design. In this innovative approach, the possibility of moving for each central node of bracing systems in defined ranges independently and the possibility of the existence or absence of each bracing member is provided. This parametric model will enable architects to optimize the topology of the structural elements which are part of their architectural design by themselves. The CMA-ES-algorithm-based optimization is done to minimize both total mass of structure per unit area and the horizontal displacement of the top floor. For modeling, optimizing cross-sections and structural analysis, Grasshopper and its plug-in called Karamba are utilized.
keywords Topology optimization; Form finding; Parametric design; Timber tall buildings; Exoskeleton structures
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_311
id caadria2021_311
authors Gu, Xiangshu, Tian, Shulin, Zhang, Baihui, Tong, Ziyu and Gan, Jingwen
year 2021
title SECTIONMATRIX - Mapping Urban Form through Urban Sections
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 599-608
doi https://doi.org/10.52842/conf.caadria.2021.2.599
summary Most of the traditional studies on urban morphology are based on aerial views. However, the 2D plane model fails to describe the height information of buildings and the relation of buildings and the urban external space. An urban section is another map of an urban area. Through a series of continuous vertical urban slices, the city texture can be transformed into planar linear information containing height and width information. This paper proposes several indicators to describe a series of urban section slices and uses a three-dimensional coordinate mapping method Sectionmatrix to quantify and analyze the relation between the physical geometrical indicators and urban form from the section perspective. Through the case analysis of multiple residential blocks in Nanjing, China, the results showed that Sectionmatrix is convenient and efficient. Sectionmatrix relates the geometrical properties to the spatial characteristics of urban areas and provides a new way to classify, map and define building typologies. This new classification method reveals the tortuosity and complexity of residential blocks. By bridging the gap between quantity and form, the research also suggests other possible applications of Sectionmatrix as a control instrument and test framework for entire cities planning and design.
keywords Urban Morphology; Urban Section; Sectionmatrix; Quantitative Analysis
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2021_117
id caadria2021_117
authors Ikeno, Kazunosuke, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Can a Generative Adversarial Network Remove Thin Clouds in Aerial Photographs? - Toward Improving the Accuracy of Generating Horizontal Building Mask Images for Deep Learning in Urban Planning and Design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 377-386
doi https://doi.org/10.52842/conf.caadria.2021.2.377
summary Information extracted from aerial photographs is widely used in the fields of urban planning and architecture. An effective method for detecting buildings in aerial photographs is to use deep learning to understand the current state of a target region. However, the building mask images used to train the deep learning model must be manually generated in many cases. To overcome this challenge, a method has been proposed for automatically generating mask images by using textured 3D virtual models with aerial photographs. Some aerial photographs include thin clouds, which degrade image quality. In this research, the thin clouds in these aerial photographs are removed by using a generative adversarial network, which leads to improvements in training accuracy. Therefore, the objective of this research is to propose a method for automatically generating building mask images by using 3D virtual models with textured aerial photographs to enable the removable of thin clouds so that the image can be used for deep learning. A model trained on datasets generated by the proposed method was able to detect buildings in aerial photographs with an accuracy of IoU = 0.651.
keywords Urban planning and design; Deep learning; Generative Adversarial Network (GAN); Semantic segmentation; Mask image
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_275
id caadria2021_275
authors Kawai, Yasuo
year 2021
title Development of a Landscape Simulation System for Historical and Cultural Heritage of the Region
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 489-498
doi https://doi.org/10.52842/conf.caadria.2021.2.489
summary In this study, we developed a historical and cultural landscape simulation system for Fujisawa-juku, a post town of the old Tokaido road. A game engine was used to recreate the landscape of the past by referring to old documents to inherit the history and culture of the region. Subsequently, an enhanced system was developed for changing the representation of time, season, and weather, and another system was developed for recreating the landscape using Ukiyo-e-style rendering. The developed system was exhibited at permanent installations in public facilities and at community events, and feedback from users led to major updates to the system. With the new information, we reviewed the shape of the model of the spatial components of the system and updated it to be more accurate. The digital model of this system can be updated with information that is not possible in a real model, such as a diorama. We will generalize this system through the unitization of spatial components to create a platform for historical cultural landscape simulation systems that can be used in other regions.
keywords Landscape Simulation; Historical Landscape; Local Cultural Inheritance; Ukiyoe; Game Engine
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2021_300
id sigradi2021_300
authors Leiro, Manoela, Darzé, Júlia, Rios, Matheus and Lemos, Paulo
year 2021
title An Experience with the Use of a BIM Tool in the Thermal Environmental Comfort Discipline
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 889–900
summary This article presents a didactic experience carried out with the use of a BIM tool in the Thermal Environmental Comfort discipline of the graduate course in Architecture and Urbanism of a private Higher Education Institution in the city of Salvador-Bahia. Starting in 2020, students began designing solar protection devices using a geometric model in Revit. The method described in Annex I of the Technical Regulation on the Quality of Energy Efficiency Level in Residential Buildings (RTQ-R) was applied. The results obtained showed a better understanding by the students about the importance of correctly sizing solar protection devices for different orientations.
keywords BIM, Ensino, Conforto Ambiental Térmico
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_138
id ecaade2021_138
authors Liapi, Katherine and Liosi, Dimitra
year 2021
title An Immersive Modular Museum-Archive Concept Model - An integration of shape grammars with virtual reality
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 323-332
doi https://doi.org/10.52842/conf.ecaade.2021.2.323
summary The paper presents a concept model of a modular exhibition that is designed to function as a museum in the physical environment and as an archive of architectural projects in the virtual. A design method based on shape grammars and inspired by the Bauhaus teaching, has been used to generate both the museum spaces and the archive which expands endlessly as the acquisition of architectural exhibits keeps increasing. Specifically, rules that control the geometric organization, tectonic expression and linear or radial expansion of a modular assembly of interlocking physical or virtual spaces, leading to various self-similar spatial patterns, have been developed. Several scenarios of the visitors' interaction with the exhibits and the museum's space with the use of VR and AR have been explored. In the actual museum scenario, physically present visitors can interact with the exhibits which are enriched with digital information. In the case of the archive, the Unity platform is used for the development of a virtual experience of the visitor who interacts with the expanding space and exhibits in a purely immersive manner.
keywords virtual reality, augmented reality, shape grammars, golden ration, modular museum, archive, Bauhaus teaching
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_333
id caadria2021_333
authors Ma, Chun Yu, Chan, Yan Yu Jennifer and Crolla, Kristof
year 2021
title Expanding Bending-Active Bamboo Gridshell Structures' Design Solution Space Through Hybrid Assembly Systems
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 331-340
doi https://doi.org/10.52842/conf.caadria.2021.1.331
summary This paper discusses the development and testing of a novel design method for the low-tech construction of bending-active bamboo gridshell structures. It expands this typologys current design solution space by combining and building up on two common production methods for light-weight shell structures: 1) the lay-up method, typically used in bamboo architecture in which members are added one at a time, and 2) the flatbed method, in which a prefabricated equidistant flat grid without shear rigidity is propped up and deformed into its final doubly curved shape. The novel methodology expands the systems design solution space by incorporating singularities within the grid topology and by layering multiple separate grids. This allows for spatially radically different building geometries without loss of implementation workflow efficiency. A demonstrator design project, tested through a large-scale prototype model, is described to illustrate the possible spatially engaging architectural design opportunities presented by the novel approach.
keywords Bending-active structures; Bamboo architecture; Shell structures; Low-tech fabrication; Form finding
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2021_132
id caadria2021_132
authors Nodado, Cheska Daclag, Yogiaman, Christine and Tracy, Kenneth
year 2021
title Towards Wind-Induced Architectural Systematization - Demonstrating the Collective Behaviour of Urban Blocks as a Design Asset
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 447-456
doi https://doi.org/10.52842/conf.caadria.2021.2.447
summary This paper presents the premise of collective behaviour of singular units as a design asset in an urban environment. The collaborative effect of building shapes, surface texture and the order of buildings on wind patterns in the urban were explored and analysed. The results revealed that these three factors are imperative to effectively design airflow and air velocity to create cooling effects in warm urban environments. This study intends to solve the problem of compact building blocks which create stagnant air in outdoor urban spaces that worsens outdoor urban thermal comfort. As the study involves a large scale urban area which requires tremendous simulation time, this paper would also demonstrate an attempt for an alternative workflow in studying computational fluid dynamic (CFD) through utilizing Houdini, which is an animation software to predict wind flow patterns in an urban context in a faster way which is highly beneficial for conceptual design stage. The paper explains the setup of Houdini working interface which enables the researcher to compare simulation results of varying models with ease via the switch button, and further improve simulation speed by disabling the need of remeshing the original model.
keywords collaborative behaviour; urban blocks; wind pattern; computational fluid dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_307
id caadria2021_307
authors Ortner, Frederick Peter and Tay, Jing Zhi
year 2021
title Pandemic resilient housing - modelling dormitory congestion for the reduction of COVID-19 spread
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 589-598
doi https://doi.org/10.52842/conf.caadria.2021.2.589
summary In response to pandemic-related social distancing measures, this paper presents a computational model for simulating resident congestion in Singapores migrant worker dormitories. The model is presented as a tool for supporting evidence-based building design and management. In contrast to agent-based or network-based building analysis, we demonstrate a method for implementing a schedule-based building simulation. In this paper we present the key functions and outputs of the computational model as well as results from analysis of a case study and its design variants. Learnings on the comparative advantages of schedule modification versus physical design modification in assisting social distancing are presented in a discussion section. In the conclusion section we consider applications of our learnings to other dense institutional buildings and future directions for evidence-based design for resilient buildings.
keywords Collective,collaborative & interdisciplinary design; Computational design research & education; Disrupted practices,resilience,and social sustainability; Simulation,visualization and impact projection
series CAADRIA
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_217950 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002