CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id ascaad2021_083
id ascaad2021_083
authors El-Dabaa, Rana; Islam Salem, Sherif Abdelmohsen
year 2021
title Digitally Encoded Wood: 4D Printing of Hygroscopic Actuators for Architectural Responsive Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 241-252
summary This paper exploits passive responsive actuators as a passive approach for adaptive façades. The study encodes the embedded hygroscopic parameters of wood through 4D printing of laminated wooden composites as a responsive wooden actuator. Several experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing patterns and infill height on the wooden angle of curvature. We present a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of wood to humidity instead of the typical natural properties of wood. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero energy consumption through utilizing both material science and additive manufacturing mechanisms. This passive responsive mechanism can be utilized in adaptive facades for dynamic shading configurations.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2021_146
id ascaad2021_146
authors Aly, Zeyad; Aly Ibrahim, Sherif Abdelmohsen
year 2021
title Augmenting Passive Actuation of Hygromorphic Skins in Desert Climates: Learning from Thorny Devil Lizard Skins
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 264-278
summary The exploitation of latent properties of natural materials such as wood in the passive actuation of adaptive building skins is of growing interest due to their added value as a low-cost and low-energy approach. The control of wood response behavior is typically conducted via physical experiments and numerical simulations that explore the impact of hygroscopic design parameters. Desert climates however suffer from water scarcity and high temperatures. Complementary mechanisms are needed to provide sufficient sources of water for effective hygroscopic operation. This paper aims to exploit such mechanisms, with specific focus on thorny devil lizard skins whose microstructure surface properties allow for maximum humidity absorption. We put forward that this process enhances hygroscopic-based passive actuation systems and their adaptation to both humidity and temperature in desert climates. Specific parameters and rules are deduced based on the lizard skin properties. Physical experiments are conducted to observe different actuation mechanisms. These mechanisms are recorded, and texture and bending morphologies are modeled for adaptive skins using Grasshopper.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_28
id sigradi2021_28
authors Atsumi, Kei, Hanazato, Toshihiro and Kato, Osamu
year 2021
title The Assembly and Fabrication of Double Curved Panel Structure Using Japanese wood Joints created by Desktop 3D Printers
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1245–1255
summary This research presents a new direction for freeform structure assembly and fabrication through the collaboration of 3D printing technology and Japanese wood joining technology. Full-scale, self-build prototyping is demonstrated without glue or metal fittings. Rather than relying on digital fabrication machines to match the architectural scale, this study utilizes the Fused Filament Fabrication (FFF) with desktop 3D printers, which is the most widespread and inexpensive printing technology. By incorporating the perspectives of wood joinery and compact 3D printers, this study promotes a drastic change in 3D printed architectural production from a massive structure-oriented system to a module-oriented system. The project demonstrates how artisanal knowledge integrates with 3D printing architectural production by reconfiguring joint geometry, parametric modeling, fabrication, and assembly processes. We discuss our research process and final achievements, and we provide new ideas for architectural production using digital fabrication.
keywords Digital fabrication, Assembly, Japanese wood joints, 3D printing, Double- curved panel structure
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia21_258
id acadia21_258
authors Augustynowicz, Edyta; Smigielska, Maria; Nikles, Daniel; Wehrle, Thomas; Wagner, Heinz
year 2021
title Parametric design and multirobotic fabrication of wood facades
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 258-269.
doi https://doi.org/10.52842/conf.acadia.2021.258
summary The paper describes the findings of the applied research project by Institute Integrative Design (currently ICDP) HGK FHNW and ERNE AG Holzbau to design and manufacture prefabricated wooden façades in the collaborative design manner between architects and industry. As such, it is an attempt to respond to the current interdisciplinary split in the construction, which blocks innovation and promotes standardized inefficient building solutions. Within this project, we apply three innovations in the industrial setup that result in the integrated design-to-production process of individualized, cost-efficient and well-crafted façades. The collaborative design approach is a method in which architect, engineer and manufacturer start exchange on the early stage of the project during the collaborative design workshops. Digital design and fabrication tools enable architects to generate a large scope of façade variations within production feasibility of the manufacturer and engineers to prepare files for robotic production. Novel multi-robot fabrication processes, developed with the industrial partner, allows for complex façade assembly. This paper introduces the concept of digital craftsmanship, manifested in a mixed fabrication system, which intelligently combines automated and manual production to obtain economic feasibility and highest aesthetic quality. Finally, we describe the design and fabrication of the project demonstrator consisting of four intricate façades on a modular office building, inspired by local traditional solutions, which validate the developed methods and highlight the architectural potential of the presented approach.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_167
id caadria2021_167
authors Ezra, Erez and Barath, Shany
year 2021
title Expanding the Role of Electro-Thermal Actuators Based On Carbon Nanotubes Within the Fabrication of Pre-Programmed Material Composites.
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 613-622
doi https://doi.org/10.52842/conf.caadria.2021.1.613
summary Taking a cue from research at the crossroads between chemistry, material science, and nanotechnology this paper examines the role of material-driven fabrication methods that enable the integration of pre-programmed geometrical expression onto customized thin-film composites from within a design mindset. Recent developments in electrothermal actuators (ETAs) have demonstrated low cost and ease of fabrication with relatively high precision deformation capabilities. We, therefore, explore ETAs based on Carbon Nanotubes (CNT) capable of reversible actuation in a controlled fashion by external stimuli. Our interest focuses on the ability to pre-program deflection through intervention with the CNT application and composite layer configuration as well as exploring affordable and relatively accessible fabrication methodologies. These adaptive mechanisms displaying; controllable movements, unique actuations, and high thermal insulation suggest affordable and responsive opportunities for developing design applications capable of expanding the role of material agency in the physical context.
keywords material computation; Pre-programmed geometry; Electro-thermal actuation; Carbon Nanotubes; Composite fabrication
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_345
id sigradi2021_345
authors Felipe, Bárbara L. and Nome, Carlos
year 2021
title Digitally Prefabricated Houses: A Comparative Analysis of Executed Projects
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 967–980
summary In Brazil, the application of wood in contemporary constructions is concentrated in the south and southeast. However, the entire country has area for cultivation and forest management, which is favorable for expansion in such applications. Wood is capable of absorbing CO2 and consumes little energy in production and manufacturing. During the COVID-19 pandemic, the deficiencies of the building typologies became evident. This research aims to analyze digitally executed prefabricated houses such as Instant House (1), Digitally Fabricated House (2) by Sass, and WikiHouse (3) by Parvin; under the categories of Cardoso (2016): modulation, reversibility, and flexibility. The deductive method was used to investigate assumptions among the three case studies; and grounded in scientific literature to analyze and collect data. In general, the solutions studied enabled customizable systems allied to wood panels, modules, and fittings as generators of architectural form.
keywords casa pré fabricadas digitalmente, fabricaçao digital, design paramétrico, arquitetura paramétrica
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_285
id caadria2021_285
authors Gawell, Ewelina
year 2021
title Optimal design of wooden pavilion gridshell structures in the context of architectural and structural collaboration
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 473-482
doi https://doi.org/10.52842/conf.caadria.2021.1.473
summary In the article two interacting aspects of collaborative design are described: shaping of the form and the rational use of materials. Form shaping will be analyzed on the basis of pavilions. The material aspect of this paper is concerned with the use of wood in contemporary construction. The first goal is to analyze the selected technical parameters related to the use of wood in the optimal shaping of gridshell structures in architecture. The second goal is to identify new opportunities for architectural and structural engineering cooperation in the context of generative digital tools. The possibility of creating new plugins for the existing generative modeling programs to improve the quality of collaboration will also be discussed. The paper is concerned with elementary research. I was able to achieve the set goals by means of theoretical analyzes based on the known literature as well as the analysis of the created objects and the accompanying research. The background for the work is a description of the selected trends of using natural wood as load-bearing elements in contemporary architecture and case studies of the selected objects that express the idea of form and material eco-efficiency.
keywords wooden structures; structural detail; bionic models
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2021_205
id ecaade2021_205
authors Kunic, Anja, Kramberger, Aljaz and Naboni, Roberto
year 2021
title Cyber-Physical Robotic Process for Re-Configurable Wood Architecture - Closing the circular loop in wood architecture
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 181-188
doi https://doi.org/10.52842/conf.ecaade.2021.2.181
summary The concept of circularity implies that materials, components, systems can be re-utilized to reduce their environmental impact by extending their life-cycle. This paper discusses an approach to circular construction that revolves around transformable wood architecture. What if we can make buildings that can be assembled, disassembled, and re-assembled by robots in infinite circular loops of reconfigurations? To explore this concept, a robotic process is developed to automate the reconfiguration of timber structures, considering the material, geometric and processual challenges involved in the operations. This method entangles establishing a cyber-physical process based on visual and force feedback, the development of wood construction elements suitable for the process, the deployment of design algorithms for semi-autonomous online construction. The paper describes this setup and demonstrates its functionality through a set of experimental prototypes conceived and evaluated in a three-phase collaborative process of assembly-disassembly-reassembly.
keywords Robotic timber construction; Circular wood architecture; Cyber-physical systems; Robotic timber re-assembly
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2021_124
id caadria2021_124
authors Leung, Pok Yin Victor, Apolinarska, Aleksandra Anna, Tanadini, Davide, Gramazio, Fabio and Kohler, Matthias
year 2021
title Automatic Assembly of Jointed Timber Structure using Distributed Robotic Clamps
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 583-592
doi https://doi.org/10.52842/conf.caadria.2021.1.583
summary This paper presents a novel robotic assembly method for timber structures with integral timber joints, specifically, crossed-half-lap joints. The proposed method uses a set of custom-built, remote-controlled, high-force robotic clamps to operate in collaboration with an industrial robotic arm to overcome challenges of robotic timber joint assembly, such as providing large assembly forces and correcting misalignments. This method enables automatic assembly of non-repetitive and spatially connected timber structures. We developed custom software for modelling, visualization and feasibility-checking for structures compatible with the proposed assembly method. As a proof of concept, we designed and robotically assembled a spatial frame structure (4.8 x 3.0m footprint, 3.4m tall) comprising 40 pieces of 100x100mm profile timber elements.
keywords Robotic Assembly; Spatial Timber Structure; Wood Joints; Distributed Robots
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia21_354
id acadia21_354
authors Liu, Yulun; Lu, Yao; Akbarzadeh, Masoud
year 2021
title Kerf Bending and Zipper-in Spatial Timber Tectonics
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 354-361.
doi https://doi.org/10.52842/conf.acadia.2021.354
summary Space frames are widely used in spatial constructions as they are lightweight, rigid, and efficient. However, when it comes to the complex and irregular spaces frames, they can be difficult to fabricate because of the uniqueness of the nodes and bars. This paper presents a novel timber space frame system that can be easily manufactured using 3-axis CNC machines, and therefore increase the ease of the design and construction of complex space frames. The form-finding of the space frame is achieved with the help of polyhedral graphic statics (PGS), and resulted form has inherent planarity which can be harnessed in the materialization of the structure. Inspired by the traditional wood tectonics kerf bending and zippers are applied when devising the connection details. The design approach and computational process of this system are described, and a test fabrication of a single node is made via 3-axis CNC milling and both physically and numerically tested. The structural performance shows its potentials for applications in large-scale spatial structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2021_85
id sigradi2021_85
authors Naboni, Roberto and Marino, Dario
year 2021
title Wedged Kerfing. Design and Fabrication Experiments in Programmed Wood Bending
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1283–1294
summary Wood as a construction material gained interest in the last decade because of its low carbon footprint and the continuous research of new design possibilities opened using computational and robotic means. The shaping of timber into non-standard shapes is challenging and industrially demanding. This paper showcases a method to computationally control the formation of curved wood elements suitable for construction purposes. The aim is to achieve wood bending and twisting through a technique that combines advanced kerfing with a controlled insertion of wedges. The research has been conducted through material testing, computational developments, and robotic prototyping to evaluate design control, fabrication accuracy, and structural potential for architectural applications.
keywords Robotic timber construction, wood architecture, performance-driven design, customized curved timber elements
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_213
id caadria2021_213
authors Oghazian, Farzaneh and Vazquez, Elena
year 2021
title A Multi-Scale Workflow for Designing with New Materials in Architecture: Case Studies across Materials and Scales - Case studies across materials and scales
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 533-542
doi https://doi.org/10.52842/conf.caadria.2021.1.533
summary In this paper, we present a workflow developed for designing with and scaling-up new materials in architecture through an iterative cycle of materialization and testing. The framework establishes a connection between design requirements and form, taking advantage of different scales in new materials known as micro, meso, and macroscale in the process of design/manufacture. Different scales when dealing with material systems-especially in those that possess some level of uncertainty in their behavior from the formation process-make it challenging to deal with the different material variables controlled at each scale. This paper presents a brief review of existing design workflows centered on material properties. We then discuss case studies and argue for a multi-scale approach for design. Finally, we present the workflow. By implementing the workflow on two case studies, we answer how we can include material scales and their embedded properties as the central part of the design/manufacture process to aid in implementing new materials in architecture. The case studies are a responsive skin system and a free-standing tensile structure incorporating 3D printed wood filament and knitted yarn as the primary material.
keywords material computation; material-based design; wood 3D printing; knitting; multi-scale workflow
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_218
id caadria2021_218
authors Saslawsky, Kevin, Sanford, Tyler, MacDonald, Katie and Schumann, Kyle
year 2021
title Branching Inventory - Democratized Fabrication of Available Stock
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 513-522
doi https://doi.org/10.52842/conf.caadria.2021.1.513
summary Branching inventory is a construction methodology demonstrated through a full-scale structural prototype that reduces the waste inherent in milling lumber and celebrates natural variation by making complex form the efficient result of irregular material. The processing of wood into standardized components embeds waste and intensive energy consumption into timber construction. This work reimagines the utility of raw materials, using computational feedback to place natural form in dialogue with design intent -- creating a dialogue between technology, material, and designer. A custom workflow synthesizes a network of branches into a specific, structural form, shaped by the thicknesses and curvatures of the stock material as well as design input. Building on work using machine visioning in fabricating non-standard timber by others -- most of which relies on elaborate and cost-prohibitive 3D scanning and robotic fabrication systems -- branching inventory demonstrates a low-fidelity, democratized version of such approaches, using standard wood and metal-working tools and in which the available material stock contributes to design possibilities.
keywords Digital Design; Digital Fabrication; 3D Scanning; Material Agency; Democratized Technology
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2021_133
id ecaade2021_133
authors Sharp, Alexa, Blay, Georgina, Kholodova, Janna and Correa, David
year 2021
title An Autonomous Bio-Inspired Shading Façade System based on Plant Movement Principles
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 463-472
doi https://doi.org/10.52842/conf.ecaade.2021.2.463
summary Utilizing existing principles of plant movement, we can design climatic-responsive facades made of hygroscopic materials. This paper investigates the use of a double actuating system to create an architectural façade. Several adaptive façade strategies have been previously developed using wood bilayers, but there has not been significant investigation into the application of multiple actuation points in a single unit. The paper presents a façade that is responsive to the surrounding environment via the kinematic amplification of hygroscopic wood expansion. The kinematic amplification uses the biomechanical principles from both the Water Lily (Nymphaea) and the Purple Shamrock (Oxalis triangularis). Acting as an adaptive shading mechanism, the façade system - arranged using Lindenmayer system principles - can improve occupant comfort by controlling solar radiation . The developed prototypes use climate-responsive wood bilayer actuators. The aesthetic and functional features of the bio-inspired mechanism promote a visual awareness between our built environment and environmental conditions.
keywords Adaptive Façade; Biomimetics; Plant Movement; Responsive Architecture; Hygroscopic; Stimulus-Responsive Materials
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia21_470
id acadia21_470
authors £ochnicki, Grzegorz; Kalousdian, Nicolas Kubail; Leder, Samuel; Maierhofer, Mathias; Wood, Dylan; Menges, Achim
year 2021
title Co-Designing Material-Robot Construction Behaviors
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 470-479.
doi https://doi.org/10.52842/conf.acadia.2021.470
summary This paper presents research on designing distributed, robotic construction systems in which robots are taught construction behaviors relative to the elastic bending of natural building materials. Using this behavioral relationship as a driver, the robotic system is developed to deal with the unpredictability of natural materials in construction and further to engage their dynamic characteristics as methods of locomotion and manipulation during the assembly of actively bent structures. Such an approach has the potential to unlock robotic building practice with rapid-renewable materials, whose short crop cycles and small carbon footprints make them particularly important inroads to sustainable construction. The research is conducted through an initial case study in which a mobile robot learns a control policy for elastically bending bamboo bundles into designed configurations using deep reinforcement learning algorithms. This policy is utilized in the process of designing relevant structures, and for the in-situ assembly of these designs. These concepts are further investigated through the co-design and physical prototyping of a mobile robot and the construction of bundled bamboo structures.

This research demonstrates a shift from an approach of absolute control and predictability to behavior-based methods of assembly. With this, materials and processes that are often considered too labor-intensive or unpredictable can be reintroduced. This reintroduction leads to new insights in architectural design and construction, where design outcome is uniquely tied to the building material and its assembly logic. This highly material-driven approach sets the stage for developing an effective, sustainable, light-touch method of building using natural materials.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
doi https://doi.org/10.52842/conf.acadia.2021.270
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_302
id acadia21_302
authors Diniz, Nancy; Melendez, Frank
year 2021
title Inoculated Matter
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 302-305.
doi https://doi.org/10.52842/conf.acadia.2021.302
summary INOCULATED MATTER looks towards new possibilities for designing and making architectural elements with living organisms, upcycled waste, and 3D printing technologies. This research project, which is currently ongoing and has been developed over the past two years, includes a series of multi-scalar mycelium bio-composites, as a means of redefining material, water, and energy in the face of changing scales of manufacturing and resource cycles.
series ACADIA
type project
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_927317 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002