CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ecaade2021_066
id ecaade2021_066
authors Dokonal, Wolfgang, Scheich, Patrick, Huyeng, Tim-Jonathan and Rüppel, Uwe
year 2021
title A Hard Road To Travel - Developing tools for low-cost Virtual Reality (VR) systems in the early design phases
doi https://doi.org/10.52842/conf.ecaade.2021.2.089
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 89-94
summary This paper updates on the developments in the use of low-cost Virtual Reality devices for Architectural design. The authors established a workflow using the gaming software "Unity" to prepare geometry for virtual environments and developed interfaces for a more natural movement inside the virtual world. We will give a summary on the old experiments and explain about our latest develoments in refining the workflow and the interfaces within a new setting. Architects teamed up with civil engineers with a focus on computer science. Due to new hardware developments, we could change the systems from wired to wireless and added several funktions within the overall aim to keep it simple and affordable.
keywords Virtual Reality; Head Mounted Displays; Low-Cost Interfaces; Google Cardboard; Microcontroller
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia23_v3_207
id acadia23_v3_207
authors Doyle, Shelby; Bogosian, Biayna; Goldman, Melissa
year 2023
title ACADIA Cultural. History Fellowship
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The Association for Computer Aided Design in Architecture (ACADIA) launched the Cultural History Project in 2021 to mark the 40th anniversary of the organization and the 41st anniversary of the conference. This initiative has provided an opportunity to reflect upon the legacy and trends of the organization as a method for considering its future. The Cultural History Project began with an open-access digital archive of the organization’s Proceedings and Quarterlies and evolved into a larger discourse about how the ACADIA community values and promotes forms of computational knowledge. A summary essay included in the 2021 Proceedings (Image 2) reflects on what the archive reveals about ACADIA and its “habits”. Habits are settled tendencies or practices, especially ones that are difficult to relinquish. The term implies repetition, perhaps unconscious, that becomes normalized through its reiteration. The 2023 ACADIA Conference, “Habits of the Anthropocene,” marks the 43rd anniversary of the conference and the 42nd anniversary of ACADIA as an organization. What are the computational habits we need to identify, recall, question, break, and replace with new (or perhaps old) ways of thinking and working?
series ACADIA
email
last changed 2024/04/17 14:00

_id caadria2021_331
id caadria2021_331
authors Globa, Anastasia, Parker, Callum, Philp, Jude and Antonios, John
year 2021
title Big Data Bugs - Investigating the design of Augmented Reality applications for museum exhibitions
doi https://doi.org/10.52842/conf.caadria.2021.2.305
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 305-314
summary This paper presents a reflection on the co-design approach taken for designing a web-based and smartphone-augmented reality (AR) application (app) for a local museum exhibit on geo-located data for entomology specimens. The AR app allows visitors to spatially visualise insect specimens in-situ and view more detailed information through their own devices. The design of the app was guided by continuous input from curators of the museum to ensure it met their requirements. The contribution of this paper is two-fold: (1) design recommendations for AR apps created for museum exhibitions, which are derived from a focus group session with museum curators; and (2) considerations for co-designing AR apps in museum contexts, based on a reflection of the design process. This paper details the iterative co-design process that was adopted for the Big Data Bugs project and presents a short summary of results deriving from a focus group testing with museum curators.
keywords augmented reality; data visualization; human computer interactions; museum exhibitions; co-design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac202119201
id ijac202119201
authors Gumuskaya, Gizem
year 2021
title Multimaterial bioprinting—minus the printer: Synthetic bacterial patterning with UV-responsive genetic circuits
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 121–141
summary In this paper, we argue that synthetic biology can help us employ living systems’ unique capacity for self-construction and biomaterial production toward developing novel architectural fabrication paradigms, in which both the raw material production and its refinement into a target structure can be merged into a single computational process embedded in the living structure itself. To demonstrate, here we introduce bioPheme, a novel biofabrication method for engineering bacteria to build biomaterial(s) of designer’s choice into arbitrary 2D geometries specified via transient UV tracing. To this end, we present the design, construction, and testing of the enabling synthetic DNA circuit, which, once inserted into a bacterial colony, allows the bacteria to execute spatial computation by interacting with one another based on the if-then rules encoded in this circuit. At the heart of this genetic circuit is a pair of UV sensor – actuator, and a pair of cell-to-cell signal transmitter – receptor modules, created with genes extracted from the virus ? Phage and marine bacterium Vibrio fischeri, respectively. These modules are wired together to help designers engineer bacteria to build macro-scale structures with seamlessly integrated biomaterials, thereby bridge the molecular and architectural scales. In this way, a bacterial lawn can be programmed to produce different objects with complementary biomaterial compositions, such as a biomineralized superstructure and an elastic tissue filling in-between. In summary, this paper focuses on how scientists’ increasing ability to harness the innate computational capacity of living cells can help designers create self-constructing structures for architectural biofabrication. Through the discussions in this paper, we aim to initiate a shift in today’s biodesign practices toward a greater appreciation and adoption of bottom-up governance of living structures. We are confident that such a paradigm shift will allow for more efficient and sustainable biofabrication systems in the 4th industrial revolution and beyond.
keywords Synthetic biology, architecture, optogenetics, design computation, genetic circuits, biofabrication, synthetic morphogenesis, computational fabrication, architectural fabrication, biodesign
series journal
email
last changed 2024/04/17 14:29

_id ascaad2021_113
id ascaad2021_113
authors Gün, Ahmet; Burak Pak, Yüksel Demir
year 2021
title Technology-Driven Participatory Spatial Design in a Developing World Context: The Case of Istanbul
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 551-567
summary Nowadays, ICT-based participatory design methods, techniques and tools are increasingly used across the globe. A majority of these are employed in high-income “developed” countries with advanced democratic systems which aim at including citizens; desires, needs, proposals as valuable input in city-making processes. In contrast, in the Global South, only a limited number of ICT-based practices aim to empower the citizens in urban design and planning at higher instances. There is a need for deeper research into how citizens can be involved in urban design in developing countries like Turkey situated in between the Global North and the South. In this context, this research will focus on Istanbul, Turkey as a key case. Different than the developed world context, enabling ICT-based participation in Turkey has a wide range of challenges. Among those are the lack of open and governmental data and transparency, the unwillingness of the policymakers to promote and employ participatory design, top-down approaches are the other weak points of these countries. Responding to these challenges, the aims of this study are: 1) to critically address the weaknesses and requirements of existing urban development practices in developing countries with a focus on Turkey, Istanbul and 2) to discuss the possible potentials of ICT-based participation tools and techniques to involve citizens in city-making processes.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_095
id ascaad2021_095
authors Najafi, Ali; Peiman Pilechiha
year 2021
title Energy and Daylight Performance Optimization of Butterfly Inspired Intelligent Adaptive Façade
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 99-112
summary The Adaptive Solar Façade (ASF) as an integrated dynamic and flexible building facade could be a hopeful design tool to provide residents comfort and energy efficiency by applying relevant integrated parametric design. Based on that, in this study, we investigated a designing process and optimization of ASF concentrating on providing the visual comfort and energy efficiency. We start with an extended summary of previous studies which has been done for developing a dynamic system correspond to origami and butterfly wings. Afterwards, we design 10 movement patterns for façade at the next stage, we simulate the Illuminance uniformity distribution and amount of energy consumption in the interior area. It should be noted that this simulation is done hourly. Therefore, 52 base models were investigated in Hamedan without using intelligent façade. It should be considered that these models are offices and they are investigated in the cold tundra in four days of the year between 6 A.M. to 6 P.M. Afterwards, 520 façade affected proposed models simulated for comparing to the base model. We have done the latter simulation using Colibri plugin while it optimized linearly. All of the datasets have been processed in an algorithm circulation for analyzing the simulations results.
series ASCAAD
email
last changed 2021/08/09 13:13

_id cdrf2021_242
id cdrf2021_242
authors Waishan Qiu , Wenjing Li, Xun Liu, and Xiaokai Huang
year 2021
title Subjectively Measured Streetscape Qualities for Shanghai with Large-Scale Application of Computer Vision and Machine Learning
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_23
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Recently, many new studies emerged to apply computer vision (CV) to street view imagery (SVI) dataset to objectively extract the view indices of various streetscape features such as trees to proxy urban scene qualities. However, human perceptions (e.g., imageability) have a subtle relationship to visual elements which cannot be fully captured using view indices. Conversely, subjective measures using survey and interview data explain more human behaviors. However, the effectiveness of integrating subjective measures with SVI dataset has been less discussed. To address this, we integrated crowdsourcing, CV, and machine learning (ML) to subjectively measure four important perceptions suggested by classical urban design theory. We first collected experts’ rating on sample SVIs regarding the four qualities which became the training labels. CV segmentation was applied to SVI samples extracting streetscape view indices as the explanatory variables. We then trained ML models and achieved high accuracy in predicting the scores. We found a strong correlation between predicted complexity score and the density of urban amenities and services Point of Interests (POI), which validates the effectiveness of subjective measures. In addition, to test the generalizability of the proposed framework as well as to inform urban renewal strategies, we compared the measured qualities in Pudong to other five renowned urban cores worldwide. Rather than predicting perceptual scores directly from generic image features using convolution neural network, our approach follows what urban design theory suggested and confirms various streetscape features affecting multi-dimensional human perceptions. Therefore, its result provides more interpretable and actionable implications for policymakers and city planners.
series cdrf
last changed 2022/09/29 07:53

_id caadria2024_176
id caadria2024_176
authors Xiao, Yijun and Yuan, Sinan
year 2024
title Unraveling the Dynamics of Urban Catering: Analysing the Factors in Shaping Neighbourhood Restaurants Sceneries
doi https://doi.org/10.52842/conf.caadria.2024.2.485
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 485–494
summary This research explores the dynamics of neighbourhood restaurants distribution in Tianjin, China, against the backdrop of rapid urbanization and evolving consumer preferences. Analysing key factors such as consumer demand, transportation, location, built environment, and competition, the study utilizes count regression models to assess occurrence frequency. The investigation reveals a significant surge in community restaurants from 2018 to 2021, influencing spatial patterns. Population density, housing prices, transportation infrastructure, and built environment emerge as pivotal factors impacting neighbourhood restaurants dynamics. The Hurdle-NB model, considering both count and zero parts, demonstrates the best fit. This study contributes nuanced insights for policymakers and industry stakeholders, aiding in enhancing accessibility, sustainability, and competitiveness of neighbourhood restaurants in urban areas amidst changing urban dynamics and consumer trends.
keywords Urban Catering, Culinary Geography, Neighbourhood Restaurants
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_177
id ecaade2021_177
authors Aksin, Feyza Nur and Arslan Selçuk, Semra
year 2021
title Use of Simulation Techniques and Optimization Tools for Daylight, Energy and Thermal Performance - The case of office module(s) in different climates
doi https://doi.org/10.52842/conf.ecaade.2021.2.409
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 409-418
summary In recent years, performance-based design has become the key issue behind design decisions in the construction industry towards reducing energy consumption. Various simulation techniques and optimization tools have started to be used together for performance objectives to reach optimal solutions for complex design process. In the sector, one of the most energy-consuming buildings is offices. This study examines the effects of integration of simulation programs and optimization tools on the daylight, energy and thermal performances of office buildings on different climates. Two cities, Ankara and Izmir, in Turkey selected as locations. The study is carried out with total of thirteen parameters. With Rhinoceros/Grasshopper software, Honeybee, Ladybug and Octopus plug-ins used for daylight, energy and thermal simulation and performance optimization. With the results obtained, the optimal configurations related with selected parameters are determined for reducing energy consumption while improving daylight and thermal performance on different climates.
keywords daylight, energy and thermal comfort performance; multi-objective optimization; performance-based design; office buildings
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_071
id ascaad2021_071
authors Al Maani, Duaa; Saba Alnusairat, Amer Al-Jokhadar
year 2021
title Transforming Learning for Architecture: Online Design Studio as New Norm for Crises Adaptation Under COVID-19
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 129-141
summary For students, studying architecture necessitates a fundamental shift in learning mode and attitude in the transition from school. Beginner students are often surprised by the new mode of learning-by-doing and the new learner identity that they must adopt and adapt to in the design studio. Moreover, due to the COVID-19 pandemic, architecture teaching has moved online. Both instructors and students are experiencing dramatic changes in their modes of teaching and learning due to the sudden move from on-campus design studios to a virtual alternative, with only the bare minimum of resources and relevant experience. This study explored the virtual design studio as a transformative learning model for disaster and resilience context, including the factors that affect foundation students’ perceptions and experiences of the quality of this adaptation. Data obtained from 248 students who took online design studios during the lockdown in 15 universities in Jordan highlight many factors that make the experience of the online design studio more challenging. Despite these challenges, strongly positive aspects of the online studio were evident and widely discussed. A model of hyper-flexible design studio in which students can have a direct contact with their instructors when needed – in addition to online activities, reviews, and written feedback – is highly recommended for the beginner years. This HyFlex model will enrich students’ learning and understanding of the fundamentals of design and ensure that technology solutions deliver significant and sustainable benefits.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_654154 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002