CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 604

_id ecaade2021_109
id ecaade2021_109
authors Doumpioti, Christina and Huang, Jeffrey
year 2021
title Intensive Differences in Spatial Design - Reversing form-finding
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 9-16
doi https://doi.org/10.52842/conf.ecaade.2021.1.009
summary Drawing from the philosophy of science, 'intensive' qualities define differences in degree instead of 'extensive' ones that define additive quantities. More relevant to architecture, intensive differences can define transient boundaries such as warmness and coolness, dryness and moisture, light and shadow, or visual accessibility, to name a few.The question that serves as a starting point of this study is whether the attributes mentioned above can become form-giving agents during the design process and, therefore, whether they become fundamental parameters for the conceptualization and configuration of extensive spatial qualities. This question is explored using Generative Adversarial Networks and image-to-image translation. The dataset consists of two types of images; one consists of spatial configurations representing extensive attributes. The second set depicts intensive characteristics of visual accessibility. The study proposes a conceptual model and workflow that reverses form-finding and enables the design of environments through the specification of desired intensive attributes. Furthermore, it discusses the advantage of working with this method in search of architectural environments with embedded spatial experiences.
keywords Intensive Differences; Form-Finding; Isovist Simulation; conditional Generative Adversarial Networks (cGAN)
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2021_226
id caadria2021_226
authors Fang, Yu-Cyuan, Chang, Teng-Wen, Hsiao, Chi-Fu and Chen, Chun-Yen
year 2021
title Developing a correcting tool for interactive fabrication process
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 653-662
doi https://doi.org/10.52842/conf.caadria.2021.1.653
summary This paper will propose the integration of multi-view stereo and time of flight technologies and components. Through the spatial point cloud sensor, the changes of objects in the space are converted into digital point clouds, which are feedback on the virtual interface. To make the virtual and physical will continuously communicate and feedback in space, which we established a correction tool for the integration of virtual and physical. The agent-based sensor computing method combines the fabrication process of visual sensors and behavior, from virtual object control to fabrication machines. In this tool, users can explain the reasons for design decisions by visualizing process and process-related information. It allows virtual and physical previews and feedback in real time, and finds out the differences between the two and makes real-time corrections. Solved the correction problem of coexistence.
keywords Digital fabrication; Digital Twin; Co-existing; Design process
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_225
id caadria2021_225
authors Cao, Shuqi and Ji, Guohua
year 2021
title Automatically generating layouts of large-scale office park using position-based dynamics
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 21-30
doi https://doi.org/10.52842/conf.caadria.2021.1.021
summary In this paper we propose an automatic layout algorithm using PBD (Position-Based Dynamic) for large-scale office park planning. Typically, the organization of buildings into a layout is a labor-intensive problem, and takes up most of designers working time. Unlike Evolutionary Algorithms who has high computational cost, and GAN (Generative Adversarial Networks) whose constraints are not explicit, PBD can handle complex geometric constraints fast enough to be used in interactive environments. The high efficiency will not only accelerate the design iteration from draft to drawings, but also provide precious feasible sample for performance optimization. Furthermore, PBD is intuitive and flexible to be implemented which makes it a potential technique to be used in real design workflow.
keywords Generative Design; Automated Layout Generation; Position-Based Dynamics; Real-time Design Tool; Exploratory Design
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
doi https://doi.org/10.52842/conf.acadia.2021.270
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_122
id ascaad2021_122
authors Georgiou, Michail; Odysseas Georgiou, Pavlos Fereos, Eftihis Efthimiou
year 2021
title X-Max | A Digitally Fabricated, Component-Based, Scrap Metal Assembly
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 536-549
summary The paper presents the outcome, titled X-MAX, of an educational, intensive 2-week workshop that focused in digitally fabricated, 3D component-based, non-Euclidean geometries using sheet metal forming. Related case studies are analyzed, compared, and grouped to identify the position and contribution of the research in the field. Early design proposals are compared and evaluated based on the hypothesis that improvements in material efficiency and construction/fabrication logistics can contribute towards more affordable design solutions. The fittest solution is further developed and optimized for construction, resulting in a full-scale prototype demonstrating expedited assembly times and decrease in manual labor with parallel savings in material resources. A purposely built design workflow is supported by a comprehensive computational model, enabling information input and output and control via various design parameters. The methodologies of registering scrap sheet metal for fabrication and simulating material bending behavior implementing K-factors are presented and discussed as novel and integral parts of the above workflow.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_118
id caadria2021_118
authors Huang, Chien-hua
year 2021
title Reinforcement Learning for Architectural Design-Build - Opportunity of Machine Learning in a Material-informed Circular Design Strategy
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 171-180
doi https://doi.org/10.52842/conf.caadria.2021.1.171
summary This paper discusses the potentials of reinforcement learning in game engine for design, implementation, and construction of architecture. It inaugurates a new design tool that promotes a material-informed design-build workflow for architectural design and construction industries that achieves a comprehensive circular economy. As a proof of concept, it uses the project Reform Standard, a machine-learning-based searching system that designs new shell structures composed of existing wasted materials, as a demonstration to discuss how reinforcement learning, machine vision and automated searching algorithm in the game engine can promote a material-aware design and converts wastes into construction materials. The demonstrator project sorts and transforms irregular chunks of wasted broken plastics into a new form. Instead of recycling those wastes in an energy-intensive process, the game engine is capable of finding the intricacy and new machine-oriented aesthetics in those otherwise neglected wastes. Furthermore, future research directions such as robotic-aided construction are discussed by exposing the potentials and problems in the demonstrated project. Finally, the future circular strategy is discussed beyond the demonstrated tests and local uses. The standardization of material, legislation and material lifecycle needs to be comprehensively considered and designed by architects and designers during conceptual design phase.
keywords Reinforcement Learning; ML-Agents; Unity3D; circular design; geometric analysis
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_218
id caadria2021_218
authors Saslawsky, Kevin, Sanford, Tyler, MacDonald, Katie and Schumann, Kyle
year 2021
title Branching Inventory - Democratized Fabrication of Available Stock
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 513-522
doi https://doi.org/10.52842/conf.caadria.2021.1.513
summary Branching inventory is a construction methodology demonstrated through a full-scale structural prototype that reduces the waste inherent in milling lumber and celebrates natural variation by making complex form the efficient result of irregular material. The processing of wood into standardized components embeds waste and intensive energy consumption into timber construction. This work reimagines the utility of raw materials, using computational feedback to place natural form in dialogue with design intent -- creating a dialogue between technology, material, and designer. A custom workflow synthesizes a network of branches into a specific, structural form, shaped by the thicknesses and curvatures of the stock material as well as design input. Building on work using machine visioning in fabricating non-standard timber by others -- most of which relies on elaborate and cost-prohibitive 3D scanning and robotic fabrication systems -- branching inventory demonstrates a low-fidelity, democratized version of such approaches, using standard wood and metal-working tools and in which the available material stock contributes to design possibilities.
keywords Digital Design; Digital Fabrication; 3D Scanning; Material Agency; Democratized Technology
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia21_292
id acadia21_292
authors Schumann, Kyle; MacDonald, Katie
year 2021
title Pillow Forming
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 292-301.
doi https://doi.org/10.52842/conf.acadia.2021.292
summary Recent decades have seen the development of increasingly powerful digital modeling and fabrication tools applied to the creation of molds or formwork for cast or formed materials. Many of these processes are highly customizable but resource intensive, singular in geometry, and disposable. This paper introduces pillow forming as a customizable, reusable forming system aimed at minimizing the resource intensity of construction and capable of producing both standardized and unique curved molded panels. The apparatus consists of a field of pneumatic pillows that inflate to form a complex curved surface with which various materials can be formed or cast. The design and construction of the system is discussed, including the modular inflation system, pneumatic and electronic control systems, control software run through Rhinoceros, Grasshopper, and Arduino, as well as the standard operation procedure. The system is demonstrated through the production of Homegrown, an architectural installation built of pillow formed biomaterial aggregate. Various limitations and opportunities of the system are discussed and analyzed, and opportunities for future development and applications in sustainable construction are posited.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_197
id ecaade2021_197
authors Szentesi-Nejur, Szende, De Luca, Francesco and Nejur, Andrei
year 2021
title Integrated Architectural and Environmental Performance-Driven Form-Finding - A teaching case study in Montreal
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 105-114
doi https://doi.org/10.52842/conf.ecaade.2021.2.105
summary The proposed paper presents the methodology and the outcomes of an intensive conception studio taught by the authors at the School of architecture of the University of Montreal having as objective the introduction of 3rd year architecture students to environmental evaluation and optimization techniques linked by the parametric design and the generative creation of architectural object. As opposed to mostly analysis-based approaches, an integration with architectural and urban design concepts was considered to be a more efficient method to initiate architecture students in environmental performance-driven design. The novelty of the course lays in the development of an integrative teaching method having as educational goals the development of environmental analysis skills, the creative use of digital tools, the conception of a coherent optimization process and the ability to represent a performance-driven design process.
keywords integrative teaching method, environmental design, performance-based design, parametric design, solar architecture, optimization
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaade2021_159
id ecaade2021_159
authors Yazicioglu, Gülin and Gürsel Dino, Ipek
year 2021
title From Streetscape to Data - Semantic segmentation for the prediction of outdoor thermal comfort
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 555-562
doi https://doi.org/10.52842/conf.ecaade.2021.1.555
summary In recent years, the increasing pace of urbanization is expected to increase the temperatures in urban contexts and amplify the Urban Heat Island effect. This phenomenon has a negative impact on the urbanites' thermal comfort in outdoor spaces. Modeling and simulation-based approaches can precisely calculate outdoor thermal comfort; however, they are labor-intensive and high in computational cost. This difficulty might discourage decision-makers to consider outdoor thermal comfort conditions, which can affect their strategies at the beginning stage of design. This paper aims to propose a statistical model that can predict outdoor comfort using semantic segmentation of 2D street view images. Firstly, 78 panoramic street images of selected three streets in Istanbul are used to calculate the specific object classes that have an influence on outdoor temperature using semantic segmentation. Following, the streets' outdoor thermal comfort is calculated in Ladybug/Grasshopper. Lastly, two multi-variate regression models are built using the percentages of these object classes in each image and outdoor thermal comfort in given locations on the streets. Initial results show that the proposed regression models can predict UTCI with R2=0.78 and R2=0.80, indicating the semantic segmentation can support the calculation of outdoor comfort.
keywords multivariate linear regression model; semantic segmentation; universal thermal climate index (UTCI)
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia21_470
id acadia21_470
authors £ochnicki, Grzegorz; Kalousdian, Nicolas Kubail; Leder, Samuel; Maierhofer, Mathias; Wood, Dylan; Menges, Achim
year 2021
title Co-Designing Material-Robot Construction Behaviors
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 470-479.
doi https://doi.org/10.52842/conf.acadia.2021.470
summary This paper presents research on designing distributed, robotic construction systems in which robots are taught construction behaviors relative to the elastic bending of natural building materials. Using this behavioral relationship as a driver, the robotic system is developed to deal with the unpredictability of natural materials in construction and further to engage their dynamic characteristics as methods of locomotion and manipulation during the assembly of actively bent structures. Such an approach has the potential to unlock robotic building practice with rapid-renewable materials, whose short crop cycles and small carbon footprints make them particularly important inroads to sustainable construction. The research is conducted through an initial case study in which a mobile robot learns a control policy for elastically bending bamboo bundles into designed configurations using deep reinforcement learning algorithms. This policy is utilized in the process of designing relevant structures, and for the in-situ assembly of these designs. These concepts are further investigated through the co-design and physical prototyping of a mobile robot and the construction of bundled bamboo structures.

This research demonstrates a shift from an approach of absolute control and predictability to behavior-based methods of assembly. With this, materials and processes that are often considered too labor-intensive or unpredictable can be reintroduced. This reintroduction leads to new insights in architectural design and construction, where design outcome is uniquely tied to the building material and its assembly logic. This highly material-driven approach sets the stage for developing an effective, sustainable, light-touch method of building using natural materials.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_029
id ascaad2021_029
authors Goubran, Sherif; Carmela Cucuzzella, Mohamed Ouf
year 2021
title Eco-Nudging: Interactive Digital Design to Solicit Immediate Energy Actions in The Built Space
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 177-189
summary In the built space, building occupants, their behaviours and control actions are research areas that have gained a lot of attention. This is well justified since energy behaviours can result in differences of up to 25% in building energy consumption. Previous research recommends exploring ways to influence occupants' energy behaviour – through eco-feedback and by directly engaging occupants with building controls. Very little attention has been given to the role digital art and design can play in soliciting and changing human energy-related actions and behaviours in the built space. This paper proposes a new process that combines eco-feedback, gamification, and ecological digital art to trigger occupants to take immediate and precise control actions in the built space. We design, deploy and test this by creating an immersive human-building-interaction apparatus, which we place in a month-long exhibition. This experimental interface was informed by a novel vision for engagement-based human-building interactions deeply rooted in aesthetics, digital art and design. It also uses digital art to mediate between the occupants and energy-performance of spaces by redefining their relationship with and perception of energy – moving from metrics and quantities understanding to one that is art and emotion-based. The analysis reveals that this new type of human-engagement-based interactive building-control mechanism can add a significant layer of influence on energy-related actions – without revoking the individuals' ability to control their environment. It also highlights digital design and art's power in guiding actions and interactions with the built space.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ecaade2021_072
id ecaade2021_072
authors Jarzyna, Micha³
year 2021
title Finding Optimal Path Planning Method for Building Navigation in BIM
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 31-38
doi https://doi.org/10.52842/conf.ecaade.2021.2.031
summary Building's spatial structure described in a BIM model can be used for retrieving the information required for determining the shortest path within the building. The matrix method and the visibility method are the two main ways of dividing space into prime factors. Both are widely used to find the shortest path. In order to compare the performance of both methods, several tests were carried out with various versions of the floorplan modification (room area, the surface of internal walls, distance between the entrance, and exit in a straight line and within the boundary marked by walls of the maze). The results revealed significant differences between the visibility graph and the matrix method.
keywords BIM; Building information modeling; Facility management; FM; Routing in building
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2021_291
id ecaade2021_291
authors Mondal, Joy
year 2021
title Differences between Architects' and Non-architects' Visual Perception of Originality of Tower Typology - Quantification of subjective evaluation using Deep Learning
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 65-74
doi https://doi.org/10.52842/conf.ecaade.2021.1.065
summary The paper presents a computational methodology to quantify the differences in visual perception of originality of the rotating tower typology between architects and non-architects. A parametric definition of the Absolute Tower Building D with twelve variables is used to generate 250 design variants. Subsequently, sixty architects and sixty non-architects were asked to rate the design variants, in comparison to the original design, on a Likert scale of 'Plagiarised' to 'Original'. With the crowd-sourced evaluation data, two neural networks - one each for architects and non-architects - were trained to predict the originality score of 15,000 design variants. The results indicate that architects are more lenient at seeing design variants as original. The average originality score by architects is 27.74% higher than the average originality score by non-architects. Compared to a non-architect, an architect is 1.93 times likelier to see a design variant as original. In 92.01% of the cases, architects' originality score is higher than non-architects'. The methodology can be used to capture and predict any subjective opinion.
keywords Originality; Visual perception; Crowd-sourced; Subjective evaluation; Deep learning; Neural network
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2021_175
id ecaade2021_175
authors Sliwecki, Bartosz
year 2021
title Virtual Online Living Spaces - The perfect home in the imperfect dream society of digital space
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 385-392
doi https://doi.org/10.52842/conf.ecaade.2021.1.385
summary Cheap VR technologies have fed the online community a boasting dose of bored individuals that crave rapid, on demand, interactive entertainment, which is freely available on platforms such as VR CHAT. Up to today, VR platforms primarily exist as an extra layered multimedia entertainment platform with fairly shallow character development and scene use. Through the use of such platforms, a general assessment of key traits was formed based on the population status of the most visited worlds by the general public throughout a typical week. Six key traits were used as a baseline view in order to better understand the relations between each world and how the individual differences could have influenced the final result. the traits were design quality, complexity, lighting conditions, function, scale, and asset amount. The final results proved that pre-pandemic online populace chose worlds of fairly mid ranged traits almost all across the board, with the exception of lighting conditions and representative function. Gathered information will form a basic understanding of the desires of the virtual human counterpart, and from a clearer view of the trends in virtual architecture design for online living spaces.
keywords virtual architecture; digital design; virtual reality; computer aided architectural design; online societies
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2021_237
id ecaade2021_237
authors Sönmez, Ayça and Gönenç Sorguç, Arzu
year 2021
title Computer-Aided Fabrication Technologies as Computational Design Mediators
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 465-474
doi https://doi.org/10.52842/conf.ecaade.2021.1.465
summary The developments in recent technologies through Industry 4.0 lead to the integration of digital design and manufacturing processes. Albeit manufacturing continues to increase its importance as design input, it is generally considered at the last stages of the design process. This misconception results in a gap between digital design and fabrication, leading to differences between the initial design and the fabricated outcome in the context of architectural tectonics. Here, we present an artificial intelligence (AI)-based approach that aims to provide a basis to bridge the gap between computation and fabrication. We considered a case study of a 3D model in two stages. In the first stage, an intuitive and top-down design process is adopted, and in the second stage, an AI-based exploration is conducted with three cases derived from the same 3D model. The outcomes of the two stages provided a dataset including different design parameters to be used in a decision tree classifier algorithm which selects the manufacturing method for a given 3D model. Our results show that generative design simulations based on manufacturing constraints can provide a significant variety of manufacturable design alternatives, and minimizes the difference between design alternatives. Using our proposed approach, the time spent in form-finding and fabrication can be reduced significantly. Additionally, the implementation of decision tree classifier learning algorithm shows that AI can serve designers to make accurate predictions for manufacturing method.
keywords Generative Design; Computer-Aided Fabrication; Arcihtecture 4.0; Artificial Intelligence; Digital Tectonics
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2021_075
id caadria2021_075
authors Yang, Chunxia, Lyu, Chengzhe, Yao, Ziying and Liu, Mengxuan
year 2021
title Study on the Differences of Day and Night Behavior in Urban Waterfront Public Space Based on Multi-agent Behavior Simulation
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 559-568
doi https://doi.org/10.52842/conf.caadria.2021.2.559
summary In the twenty-four hour city era, how to optimize public spaces based on night behavior demands to promote full-time use has become a significant issue of urban design. Taking Shanghai North Bund as an example, the study collects data through site survey and questionnaire including environment elements, users attribute and behaviors. Next, the study sets up the simulation environment and translate the interaction of space and behavior into model language. Then, by setting up agent particles, running and fitting, the study obtains an ideal model. Finally, through sub-simulation and analysis, the study quantitatively explores the interaction mechanism between the physical environment and behavior from three levels of different spaces, different groups of people and different light conditions. The study finds that the differences of day and night behavior are produced under the combined effect of changes in attractiveness of environmental elements and changes in users demands and preferences. Compared with adults, the behaviors of elderly people and children show more obvious differences between day and night, and are more susceptible to space lighting, ground conditions and operating hours of facilities. Furthermore, the same kind of environment element will further affect users behavior in the night under different light conditions.
keywords Self-Organization Behavior; Behavior Differences; Day and Night; Multi-Agent Behavior Simulation; Waterfront Public Space
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_233
id caadria2021_233
authors Ascoli, Raphaël
year 2021
title Augmenting computational design agency in emerging economies
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 639-648
doi https://doi.org/10.52842/conf.caadria.2021.2.639
summary This /practice-based design research/ investigates the possibility of computational design to increase agency and impact in emerging economies through real-world projects. By cultivating a new kind of relationship to issues in development and local untapped resources, they inspire for more public engagement and resource-based conversations within a spatial framework. The topics that were addressed in this research are the democratization of data and affordability of construction. These two on-going early-stage initiatives have used computational design tools at specific areas in the projects development, therefore optimizing the parts where low-tech tools werent sufficient. This demand driven design process explores ways in which different levels of technology can augment each other.
keywords space; resource; housing; myanmar; optimization
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_239560 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002