CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id ascaad2021_115
id ascaad2021_115
authors Shams El-Din, Hend
year 2021
title Using 3D digital technologies for the documentation and reconstruction of destroyed heritage buildings
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 581-591
summary Egypt lacks documentation of many of its distinguished heritage treasures, such as artifacts, buildings, monuments and sites. As for the documented component, documents remain in library shelves without much access except for specialists. Much of this documentation has disappeared as a result of neglect, damage factors and various structural repercussions, or as a result of demolition. There is no doubt about the number of heritage buildings that were demolished for city planning purposes, especially in Cairo which possesses more than a third of the traces of the Islamic civilization; a transformationthat is demonstrated by comparing scholar descriptions of the French campaign to Egypt in 1798 and photos taken from the years 1899 to 1920 and beyond, leading to loss of valuable cultural heritage. Therefore, the preservation of this heritage, with the advancement in digital technologies has become one of the important priorities at the international level to confront these problems.Some of the approaches in this regard involve 3D information modeling using either photogrammetry and laser scanning, or 3D modeling and documentation using AutoCAD or 3DMax. This paper addresses the use of Building Information Modeling (BIM) technology in recording, documenting and imagining the reconstruction of heritage buildings, especially partially or completely destroyed heritage buildings, based on written descriptions, pictures or drawings, and the exploitation of technology in the application of virtual heritage, the reconstruction and composition of buildings, structures or artifacts virtually on the computer at fixed epochs. The aim of the paper is to provide a framework to preserve heritage at a lower cost than modern high cost methods, provide a library of its unique architectural elements, revive heritage documents of antiquities, as well as benefiting from their added value in maintenance and restoration operations, and offering data for further studies related to preservation of cultural heritage.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_004
id ascaad2021_004
authors Ali, Nouran; Samir Hosny, Ahmed Abdin
year 2021
title Thermal Performance of Nanomaterials of a Medium Size Office Building Envelope: With a Special Reference to Hot Arid Climatic Zone of Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 385-396
summary Global warming is becoming a huge threat in the 21st century. The building is the main contributor to energy consumption and greenhouse gas emissions which play an important role in global warming. Using new technologies provides a step towards a better-built environment. Nanotechnology is an emerging technology that provides innovative materials that integrate with the building envelope to enhance energy efficiency and decrease energy consumption in buildings. Many Nano products are a promising candidate for building thermal insulation and increasing the building’s efficiency. This paper aims to reach minimum energy consumption by investigating Nanomaterials thermal performance on a building’s envelope in a hot arid climate. An office building in Cairo, Egypt is chosen as a case study. The paper presents an empirical/applied inquiry that is based on a computer simulation using Design Builder software. Energy consumption is calculated for different cases; the base model of the office building without using nanomaterials, and several nano models using nanomaterials. The results indicate that the use of Nanomaterials can enhance the thermal performance of the office building and save about 13.44 % of the annual energy consumption of the building.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_162
id caadria2021_162
authors Yan, Chao and Yuan, Philip F.
year 2021
title Beyond Embodiment - An Existential Project of Digital Tectonics in the Posthumanist Discourses
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 91-100
doi https://doi.org/10.52842/conf.caadria.2021.2.091
summary The paper is a theoretical review on the nature of tectonic expressions in the context of digital design and construction. By investigating the origin of digital tectonics as a methodological exploration to dissolve the oppositional relationship between the digital and the tectonic, the paper identifies the lack of focus on the essential task of tectonic expression-constructing embodied experience on the building form. Therefore, the paper firstly reviews how tectonic expression is understood in its traditional sense, particularly within its indispensable relationship to human body in order to construct the empathic perception of structural dynamics. Then, the paper reveals the disassociation between human body and tectonic form in the posthumanist mode of design-to-construction of the digital age. Further, by articulating the dynamic nature of embodiment in the posthumanist scenario where the body is constantly reconstructed by the technocultural conext of the living environment, the paper proposes a theoretical model arguing for a reinterpretation of both the nature and the task of digital tectonics in order to reclaim the embodied experience in the digital age. Digital tectonics becomes an existential project that must be designed within its mutual determining relationship with the historical-cultural construction of the body-self.
keywords digital tectonics; tectonic expression; embodiment; empathy; posthumanist body
series CAADRIA
email
last changed 2022/06/07 07:57

_id ascaad2021_021
id ascaad2021_021
authors Albassel, Mohamed; Mustafa Waly
year 2021
title Applying Machine Learning to Enhance the Implementation of Egyptian Fire and Life Safety Code in Mega Projects
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 7-22
summary Machine Learning has become a significant research area in architecture; it can be used to retrieve valuable information for available data used to predict future instances. the purpose of this research was to develop an automated workflow to enhance the implementation of The Egyptian fire & life safety (FLS) code in mega projects and reduce the time wasted on the traditional process of rooms’ uses, occupant load, and egress capacity calculations to increase productivity by applying Supervised Machine Learning based on classification techniques through data mining and building datasets from previous projects, and explore the methods of preparation and analyzing data (text cleanup- tokenization- filtering- stemming-labeling). Then, provide an algorithm for classification rules using C# and python in integration with BIM tools such as Revit-Dynamo to calculate cumulative occupant load based on factors which are mentioned in the Egyptian FLS code, determine classification and uses of rooms to validate all data related to FLS. Moreover, calculating the egress capacity of means of egress for not only exit doors but also exit stairs. In addition, the research is to identify a clear understanding about ML and BIM through project case studies and how to build a model with the needed accuracy.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_50
id sigradi2021_50
authors Albuquerque, Dilson and Andrade, Max
year 2021
title The Impacts of Collaboration and Cordination of Architectural and Engineering Projects Developed with BIM in Reducing Design Interferences
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 783–794
summary This paper addresses the importance and development of cultural transformations involving the design process in architecture and the advent of Building Information Modeling (BIM) in civil construction activities and how its implementation in a coordinated, collaborative and interoperable way contributes to a diagnosis of Clash Detection between diferentes design projects, before building construction, saving excessive costs and rework. Taking as its main reference the BIM Maturity Matrix of Succar (2009), the proposed BIM Project Integration Maturity Matrix contributes to the awareness of bringing designers and builders closer to design activities, to encourage the integration of design processes involving the building, to consolidate an environment of ease of communication between participants, the organization of documentation and, above all, prioritize the compatibility between projects to avoid conflicts, excess costs and rework, resulting in a higher quality of the final project.
keywords Coordenaçao de projetos, detecçao de interferencias, Building Information Modeling, matriz de avaliaçao, projeto integrado
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
doi https://doi.org/10.52842/conf.caadria.2021.1.051
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_447
id caadria2021_447
authors Belek Fialho Teixeira, Muge, Pham, Kieu, Caldwell, Glenda, Seevinck, Jennifer, Swann, Levi, Rittenbruch, Markus, Kelly, Nick, Santo, Yasuhiro, Garcia-Hansen, Veronica and Voltz, Kirsty
year 2021
title A User-Centred Focus on Augmented Reality and Virtual Reality in AEC: Opportunities and Barriers Identified by Industry Professionals - OPPORTUNITIES AND BARRIERS IDENTIFIED BY INDUSTRY PROFESSIONALS
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 273-283
doi https://doi.org/10.52842/conf.caadria.2021.2.273
summary This paper presents insights into the opportunities and barriers for using augmented reality (AR) and virtual reality (VR) in the architecture, engineering and construction (AEC) industry by contextualising how their adoption is leveraged in practices. Based on a review of literature, a qualitative study using semi-structured interviews was conducted with thirteen participants from AEC industries between five and thirty years of experience. Interviews were conducted face-to-face and virtually using questions focusing on participants experiences, perceptions of, and opinions about the use of AR/VR in AEC practice. Qualitative dissemination of key insights highlighted immediate and future possibilities for AR/VR, with current limitations that require future investigation from a user-centred perspective. Suggesting a XR-PACT framework, this paper frames key directions for future research to address current limitations and explore new opportunities that positively impact architecture and other professions, communities of building users.
keywords Augmented Reality; Virtual Reality; AEC; User Experience; Technology Adoption
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_202
id ecaade2021_202
authors Campos, Tatiana, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title The Use of Natural Materials in Additive Manufacturing of Buildings Components - Towards a more sustainable architecture
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 355-364
doi https://doi.org/10.52842/conf.ecaade.2021.1.355
summary The demand for sustainable building materials is currently a major concern of society. It is known that the traditional construction industry requires a high consumption of inorganic materials, which is associated with the excessive production of waste. Thus, this article intends to demonstrate the possibility of using the Additive Manufacturing (AM) technique Paste Extrusion Modeling (PEM) in the production of reusable, biodegradable and recyclable construction systems, using a combination of different natural materials that have created multiple pastes with different additives.Cellulose is a natural material - biodegradable, recyclable and low cost - and its implementation aims to change some aspects of the current state of the construction sector and can have a real impact on the exploration of innovative solutions and more sustainable alternative building systems. The integration of AM techniques, PEM method, supported by computational modelling tools, will allow the definition of a building system and its components. Depending on the material used - natural materials or biomaterials - the constraints and limitations of AM will be considered.
keywords Cellulose; Natural Fibers; Additive Manufacturing; Sustainable Construction
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_368
id caadria2021_368
authors Cheng, Fang-Che, Yen, Chia-Ching and Jeng, Tay-Sheng
year 2021
title Object Recognition and User Interface Design for Vision-based Autonomous Robotic Grasping Point Determination
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 633-642
doi https://doi.org/10.52842/conf.caadria.2021.1.633
summary The integration of Robot Operating System (ROS) with Human-Machine Collaboration (HMC) currently represents the future tendency toward Autonomous Robotic In-Situ Assembly on Construction Sites. In comparison with the industrial environment, construction sites nowadays are extremely complex and unpredictable, due to the different building components and customized design.This paper presents a visual-based object recognition method and user interface enabling on-site robot arms to autonomously handle building components, to build specific designs without the influence of material, shape, and environment. The implementation is an object recognition approach that serves with KUKA industrial robotic manipulator along with an RGB-depth stereo camera in an eye-in-hand configuration to grasp and manipulate found elements to build the desired structure. Opportunities for using vision-based autonomous robotic in-situ assembly on construction sites are reviewed.
keywords computer vision; robot operating system; object recognition; pose estimate; grasping point determination; human-robot collaboration
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_279
id ecaade2021_279
authors Coraglia, Ugo Maria, Zhu, Zhelun, Fioravanti, Antonio, Simeone, Davide and Cursi, Stefano
year 2021
title A new Relation Matrix as a Fruitful Meta-Design Tool - How to overcome typological limits
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 295-302
doi https://doi.org/10.52842/conf.ecaade.2021.1.295
summary The use of meta-design tools to support the early stages of the design process is widely proven in literature. Among these tools, the adjacency matrix and the bubble diagram provided the various professionals involved - not only in the AEC sector - with some useful information mainly regarding the connection types between spaces and the sizing of their dimensions. With the evolution of design and the change of architectural aims (e.g. sustainability, refurbishment), it is not fruitful, especially related to complex buildings (e.g. hospital, airport), to manage spaces and their connections through the traditional Adjacency Matrix and its dual (Bubble Diagram). These tools, used as they were originally designed, do not consider other characteristics but basic topological ones and are still linked to 2D geometry. For this reason, this research aims to increase the unexplored design potential of these tools considering huge advances in building object representation and links with knowledge. The first research steps led to a 3D analysis capable of providing knowledge on the connections and adjacencies between spaces and its environments located on different floors. Therefore, we decided to define further goals, breaking limits of the "adjacency" concept for a more extendable and general concept of "relation" between spaces and environments.
keywords Relation Matrix; Meta-design; Architectural design theory; Tool
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
doi https://doi.org/10.52842/conf.acadia.2021.270
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_058
id ascaad2021_058
authors ElGewely, Maha; Wafaa Nadim, Mostafa Talaat, Ahmad El Kassed,Mohamed Yehia, Slim Abdennadher
year 2021
title Immersive VR Environment for Construction Detailing Education: BIM Approach
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 114-128
summary According to literature in education, adults learn best when learning is active, self-directed, problem-based, and relevant to their needs. In Building Construction Education, construction site visits provide students with real-life practical experience which are considered an extension for classroom. Nevertheless, it is challenging to integrate construction site visits regularly during the academic semester with respect to the class specific needs. Virtual Reality as an interactive immersive technology may facilitate virtual construction site that meets the learning needs where students can explore and build in a real scale environment. The proposed VR environment is an HMD VR platform for construction detailing that provides experiential learning in a zero-risk environment. It builds on integrating VR technology as a medium and Building Information Modeling (BIM) as a repository of information. This work discusses the proposed environment curricular unit prototype design, implementation, and validation. System usability and immersion are assessed both qualitatively and quantitatively. After considering the feedback, The VR environment prototype is then validated on the level of learning outcomes, providing the evidence that it would enhance students’ engagement, motivation and achievement accordingly.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_176
id sigradi2021_176
authors Escaleira, Cláudia, Morais, António, Figueiredo, Bruno and Cruz, Paulo
year 2021
title Reuse of Ceramic Roof Tiles: Enhancing New Functional Design Possibilities Through the Integration of Digital Tools for Simulation, Manufacture and Assembly
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1475–1486
summary The material qualities of ceramic roof tiles have provided new formal interpretations that induced a new functional use—a wall. By disassembling ceramic roof tiles from roofs and assembling them into walls, its circularity potential was enlarged. This paper explores the potential use of ceramic roof tiles, as a single element type, in the definition of wall design systems and patterns of composition that comply with design for manufacture, assembly and disassembly (DfMA-D) requirements, through the development of a shape grammar and implementation through parametric models. The new shape grammar extends the compositional patterns already produced and the redefinition of the connection systems by incorporating DfMA-D requirements into the shape grammar rules sets new combinatorial patterns aligned with European Union goals for building circularity. The parametric models automate the generation of design solutions and extend the design process to the assembly and disassembly stages using robotic fabrication techniques.
keywords circular building, component reuse, computational design, ceramic roof tiles, robotics in architecture
series SIGraDi
email
last changed 2022/05/23 12:11

_id ijac202119408
id ijac202119408
authors Herrmann, Erik W.; Bigham, Ashley
year 2021
title Drawing Fields: Prototyping public space with semi-autonomous robots
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 612–617
summary This paper is a concise report of Drawing Fields, a temporary performance venue on the campus of Ragdale, a nonprofit artists’community just north of Chicago. Drawing Fields utilizes GPS-controlledfield marking robots to draw site-specific, building-scale drawings on the Ragdale campus. Each drawing in the seriesexplores a different theme with Drawing Fields 1 probing robotic kinetics, Drawing Fields 2 delineating socially-distanced zones for a scattered audience, and Drawing Fields 3 saturating the campus with colorful patterns. The report discusses the project implementation and includes a brief discussion of the project’s cultural, ecological and technological resonances.
keywords Context, culture, ecology, ethics, places, awareness
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_282
id caadria2021_282
authors Jauk, Julian, Vašatko, Hana, Gosch, Lukas, Christian, Ingolf, Klaus, Anita and Stavric, Milena
year 2021
title Digital Fabrication of Growth - Combining digital manufacturing of clay with natural growth of mycelium
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 753-762
doi https://doi.org/10.52842/conf.caadria.2021.1.753
summary In this paper we will demonstrate that a digital workflow and a living material such as mycelium, make the creation of smart structural designs possible. Ceramics industries are not as technically advanced in terms of digital fabrication, as the concrete or steel industries are. At the same time, bio-based materials that use growth as a manufacturing method, are often lacking in basic research. Our interdisciplinary research combines digital manufacturing - allowing a controlled material distribution, with the use of mycelial growth - enabling fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and observations of growth. In this manner the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. The composite named 'MyCera' has exhibited structural properties that open up the possibility of its implementation in the building industry. In this context it allows the design and efficient manufacturing of lightweight ceramic constructions customized to this composite, which would not have been possible using conventional ceramics fabrication methods.
keywords Mycelium; Clay; 3D Printing; Growth; Bio-welding
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_404
id caadria2021_404
authors Kim, Jong Bum, Aman, Jayedi and Balakrishnan, Bimal
year 2021
title Forecasting performance of Smart Growth development with parametric BIM-based microclimate simulations
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 411-420
doi https://doi.org/10.52842/conf.caadria.2021.1.411
summary Smart Growth is a fast-growing urban design and planning movement developed by the United States Environmental Protection Agency (EPA). These regulations control urban morphologies such as building form, position, façade configurations, building materials, road configurations, which have an explicit association with the microclimate and outdoor comfort. This paper presents an urban modeling and simulation framework that can represent the urban morphology and its impact on microclimate shaped by Smart Growth. First, we created urban models using custom parametric objects and a building component library in BIM. Then we integrated parametric BIM and multiple performance simulations, including wind analysis, solar accessibility, and energy use. For implementation, a case study was carried out using two Smart Growth regulations in the Kansas City metropolitan area. The paper elaborates on the findings from simulation results, challenges in implementation, and limitations of the proposed framework to manage a large number of regulation variables in simulation.
keywords Smart Growth Regulations; Building Information Modeling (BIM); Parametric Simulation; Microclimate Simulation; Computational Fluid Dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2022_157
id caadria2022_157
authors Liu, Sijie, Wei, Ziru and Wang, Sining
year 2022
title On-site Holographic Building Construction: A Case Study of Aurora
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 405-414
doi https://doi.org/10.52842/conf.caadria.2022.2.405
summary Geometrically complex building components‚ reliance on high-touch implementation often results in tedious information reprocessing. Recent use of Mixed Reality (MR) in architectural practices, however, can reduce data translation and potentially increase design-to-build efficiency. This paper uses Aurora, a single-story residential building for 2021 China‚s Solar Decathlon Competition, as a demonstrator to evaluate the performance of on-site holographic building construction. This paper firstly reviews recent studies of MR in architectural design and practice. It then describes an MR-aided construction process of Aurora's non-standard building envelope and rooftop mounting structure, where in-situ holographic registration, human-machine cooperation, and as-built analysis are discussed. This paper concludes by stating that MR technologies provide unskilled implementers with a handy approach to materialise complex designs. The research was guided by the UN Sustainable Development Goals, especially aligning with the GOAL 9 which seeks innovations in industry and infrastructure.
keywords Mixed Reality, Non-standard Architecture, Low-tech Construction, Solar Decathlon Competition, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2021_284
id ecaade2021_284
authors Luis, Orozco, Krtschil, Anna, Wagner, Hans-Jakob, Simon, Bechert, Amtsberg, Felix, Skoury, Lior, Knippers, Jan and Menges, Achim
year 2021
title Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey Construction
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 303-312
doi https://doi.org/10.52842/conf.ecaade.2021.1.303
summary This paper presents an agent-based method for the design of complex timber structures. This method features a multi-level agent simulation, that relies on a feedback loop between agent systems and structural simulations that update the agent environment. Such an approach can usefully be applied for the design of variable density timber slab systems, where material arrangements based on structural, fabrication, and architectural boundary conditions are necessary. Such arrangements can lead to multi-directional spanning slabs that can accept pointwise supports in unique layouts. We discuss the implementation of such a method on the basis of the structural design of a pavilion-scale multi-storey testing setup. The presented method enables a more versatile approach to the design of multi-storey timber buildings, which should increase their applicability to a diverse range of building typologies.
keywords Agent-Based Modelling; Robotic Timber Construction; Computational Design; Multi-Storey Timber Buildings
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_333
id caadria2021_333
authors Ma, Chun Yu, Chan, Yan Yu Jennifer and Crolla, Kristof
year 2021
title Expanding Bending-Active Bamboo Gridshell Structures' Design Solution Space Through Hybrid Assembly Systems
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 331-340
doi https://doi.org/10.52842/conf.caadria.2021.1.331
summary This paper discusses the development and testing of a novel design method for the low-tech construction of bending-active bamboo gridshell structures. It expands this typologys current design solution space by combining and building up on two common production methods for light-weight shell structures: 1) the lay-up method, typically used in bamboo architecture in which members are added one at a time, and 2) the flatbed method, in which a prefabricated equidistant flat grid without shear rigidity is propped up and deformed into its final doubly curved shape. The novel methodology expands the systems design solution space by incorporating singularities within the grid topology and by layering multiple separate grids. This allows for spatially radically different building geometries without loss of implementation workflow efficiency. A demonstrator design project, tested through a large-scale prototype model, is described to illustrate the possible spatially engaging architectural design opportunities presented by the novel approach.
keywords Bending-active structures; Bamboo architecture; Shell structures; Low-tech fabrication; Form finding
series CAADRIA
email
last changed 2022/06/07 07:59

_id cdrf2021_179
id cdrf2021_179
authors Mirjam Konrad, Dana Saez, and Martin Trautz
year 2021
title Integration of Algorithm-Based Optimization into the Design Process of Industrial Buildings: A Case Study
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_17
summary Algorithm-based optimization is widely applied in many fields like industrial production, resulting in state-of-the-art workflows in the production process optimization. This project takes the cultural lag of conventional industrial architecture design as a motivation to investigate the implementation of algorithmbased optimization into traditional design processes. We argue that an enhanced way of architectural decision-making is possible. Current approaches use a translation of the whole design problem into a single, overly complicated optimization system. Contrary to that, this paper presents a novel workflow that defines precise design steps and applies optimizations only if suitable. Furthermore, this method can generate relevant results for factory planning design problems with contradicting factors, making it a promising approach for the complex challenges of i.e. resource-efficient building.
series cdrf
email
last changed 2022/09/29 07:53

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_815223 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002