CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ecaade2021_284
id ecaade2021_284
authors Luis, Orozco, Krtschil, Anna, Wagner, Hans-Jakob, Simon, Bechert, Amtsberg, Felix, Skoury, Lior, Knippers, Jan and Menges, Achim
year 2021
title Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey Construction
doi https://doi.org/10.52842/conf.ecaade.2021.1.303
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 303-312
summary This paper presents an agent-based method for the design of complex timber structures. This method features a multi-level agent simulation, that relies on a feedback loop between agent systems and structural simulations that update the agent environment. Such an approach can usefully be applied for the design of variable density timber slab systems, where material arrangements based on structural, fabrication, and architectural boundary conditions are necessary. Such arrangements can lead to multi-directional spanning slabs that can accept pointwise supports in unique layouts. We discuss the implementation of such a method on the basis of the structural design of a pavilion-scale multi-storey testing setup. The presented method enables a more versatile approach to the design of multi-storey timber buildings, which should increase their applicability to a diverse range of building typologies.
keywords Agent-Based Modelling; Robotic Timber Construction; Computational Design; Multi-Storey Timber Buildings
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_258
id acadia21_258
authors Augustynowicz, Edyta; Smigielska, Maria; Nikles, Daniel; Wehrle, Thomas; Wagner, Heinz
year 2021
title Parametric design and multirobotic fabrication of wood facades
doi https://doi.org/10.52842/conf.acadia.2021.258
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 258-269.
summary The paper describes the findings of the applied research project by Institute Integrative Design (currently ICDP) HGK FHNW and ERNE AG Holzbau to design and manufacture prefabricated wooden façades in the collaborative design manner between architects and industry. As such, it is an attempt to respond to the current interdisciplinary split in the construction, which blocks innovation and promotes standardized inefficient building solutions. Within this project, we apply three innovations in the industrial setup that result in the integrated design-to-production process of individualized, cost-efficient and well-crafted façades. The collaborative design approach is a method in which architect, engineer and manufacturer start exchange on the early stage of the project during the collaborative design workshops. Digital design and fabrication tools enable architects to generate a large scope of façade variations within production feasibility of the manufacturer and engineers to prepare files for robotic production. Novel multi-robot fabrication processes, developed with the industrial partner, allows for complex façade assembly. This paper introduces the concept of digital craftsmanship, manifested in a mixed fabrication system, which intelligently combines automated and manual production to obtain economic feasibility and highest aesthetic quality. Finally, we describe the design and fabrication of the project demonstrator consisting of four intricate façades on a modular office building, inspired by local traditional solutions, which validate the developed methods and highlight the architectural potential of the presented approach.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_359
id cdrf2021_359
authors Ayoub Lharchi, Mette Ramsgaard Thomsen, and Martin Tamke
year 2021
title Joint Descriptive Modeling (JDM) for Assembly-Aware Timber Structure Design
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_33
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Joints design is an essential step in the process of designing timber structures. Complex architectural topologies require thorough planning and scheduling, as it is necessary to consider numerous factors such as structural stability, fabrication capabilities, and ease of assembly. This paper introduces a novel approach to timber joints design that embed both fabrication and assembly considerations within the same model to avoid mistakes that might cause delays and further expenses. We developed a workflow that allows us to identify the fundamental data to describe a given joint geometry, machine-independent fabrication procedures, and the assembly sequence. Based on this, we introduce a comprehensive descriptive language called Joint Descriptive Model (JDM) that leverages industry standards to convert a joint into a usable output for both fabrication and assembly simulations. Finally, we suggest a seed of a joint’s library with some common joints.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_241
id ecaade2021_241
authors Bitting, Selina, Azadi, Shervin and Nourian, Pirouz
year 2021
title Reconfigurable Domes - Computational design of dry-fit blocks for modular vaulting
doi https://doi.org/10.52842/conf.ecaade.2021.1.263
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 263-274
summary In contrast to the contemporary aesthetic account, Muqarnas are geometrically complex variations of Squinches used for structural integration of rectilinear geometries and curved geometries. Inspired by the historical functionality of Muqarnas, we present a generalized computational workflow for generating dry-fit stacking modules from two-dimensional patterns in order to construct a dome. Similar to Muqarnas these blocks are modular in nature, complex in geometry, and compression-only in their structural behavior. We demonstrate the design of such structures based on the exemplary Penrose pattern and showcase the variations & potentials of this method in comparison to conventional approaches.
keywords Muqarnas; Generative Design; Modular Design; Unreinforced Masonry Architecture; Penrose Tiling; Workflow Design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_400
id acadia21_400
authors Bruce, Mackenzie; Clune, Gabrielle; Xie, Ruxin; Mozaffari, Salma; Adel, Arash
year 2021
title Cocoon: 3D Printed Clay Formwork for Concrete Casting
doi https://doi.org/10.52842/conf.acadia.2021.400
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 400-409.
summary Concrete, a material widely used in the construction industry today for its low cost and considerable strength as a composite building material, allows designers to work with nearly any form imaginable; if the technology to build the formwork is possible. By combining two historic and widely used materials, clay and concrete, our proposed novel process, Cocoon, integrates robotic clay three-dimensional (3D) printing as the primary formwork and incrementally casting concrete into this formwork to fabricate nonstandard concrete elements. The incremental casting and printing process anchors the concrete and clay together, creating a symbiotic and harmonious relationship. The concrete’s fluidity takes shape from the 3D printed clay formwork, allowing the clay to gain structure from the concrete as it cures. As the clay loses moisture, the formwork begins to shrink, crack, and reveal the concrete below. This self-demolding process produces easily removable formwork that can then be recycled by adding water to rehydrate the clay creating a nearly zero-waste formwork. This technique outlines multiple novel design features for complex concrete structures, including extended height limit, integrated void space design, tolerable overhang, and practical solutions for clay deformation caused by the physical stress during the casting process. The novelty of the process created by 3D printing clay formwork using an industrial robotic arm allows for rapid and scalable production of nearly zero-waste customizable formwork. More significant research implications can impact the construction industry, integrating more sustainable ways to build, enabled by digital fabrication technologies.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia23_v3_189
id acadia23_v3_189
authors Leung, Pok Yin Victor; Huang, Yijiang
year 2023
title Task and Motion Planning for Robotic Assembly
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary When programming robotic assembly processes, it is often necessary to create a sequential list of actions. Some actions are robotic motions (requiring motion trajectory), and some are for controlling external equipment, such as grippers and fastening tools. The act of planning these actions and motion trajectories is called Task Planning and Motion Planning. Existing literature in robotics explored many different planning algorithms for planning a single trajectory to planning a complete sequence of tasks where continuity is maintained [Garrett et al, 2021]. Many application literature focused on the TAMP for service robots, medical robots, and self-driving cars, while there are few examples for architectural applications. For digital fabrication and automated construction, the planning method has to be adapted to the needs of architectural assemblies and the scale of construction [Leung et al, 2021]. Some of the unique challenges are the highly bespoke workpiece and assembly geometry, the large workpiece (e.g., long beams), and a dense collision environment. This three-day hybrid workshop addressed the needs of the architectural robotics community to use industrial robotic arms to assemble highly bespoke objects. The objects do not have any repetitive parts or assembly targets. The workshop leaders shared their experiences using industrial robots to construct large-scale timber structures. One of the most useful techniques is the recently published “Flowchart Planning Method,” where task sequence is planned using a flowchart, and motion trajectories are planned in a second pass [Huang et al, 2021].
series ACADIA
type workshop
last changed 2024/04/17 14:00

_id acadia21_222
id acadia21_222
authors Lok, Leslie; Samaniego, Asbiel; Spencer, Lawson
year 2021
title Timber De-Standardized
doi https://doi.org/10.52842/conf.acadia.2021.222
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 222-231.
summary Timber De-Standardized is a framework that salvages irregular and regular shaped tree logs by utilizing a mixed reality (MR) interface for the design, fabrication, and assembly of a structurally viable tree log assembly. The process engages users through a direct, hands-on design approach to iteratively modify and design irregular geometry at full scale within an immersive MR environment without altering the original material.

A digital archive of 3D scanned logs are the building elements from which users, designing in the MR environment, can digitally harvest (though slicing) and place the elements into a digitally constructed whole. The constructed whole is structurally analyzed and optimized through recursive feedback loops to preserve the user’s predetermined design. This iterative toggling between the physical and virtual emancipates the use of irregular tree log structures while informing and prioritizing the user’s design intent. To test this approach, a scaled prototype was developed and fabricated in MR.

By creating a framework that links a holographic digital design to a physical catalog of material, the interactive workflow provides greater design agency to users as co-creators in processing material parts. This participation enables users to have a direct impact on the design of discretized tree logs that would otherwise have been discarded in standardized manufacturing. This paper presents an approach in which complex tree log structures can be made without the use of robotic fabrication tools. This workflow opens new opportunities for design in which users can freely configure structures with non-standardized elements within an intuitive MR environment.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_179
id cdrf2021_179
authors Mirjam Konrad, Dana Saez, and Martin Trautz
year 2021
title Integration of Algorithm-Based Optimization into the Design Process of Industrial Buildings: A Case Study
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_17
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Algorithm-based optimization is widely applied in many fields like industrial production, resulting in state-of-the-art workflows in the production process optimization. This project takes the cultural lag of conventional industrial architecture design as a motivation to investigate the implementation of algorithmbased optimization into traditional design processes. We argue that an enhanced way of architectural decision-making is possible. Current approaches use a translation of the whole design problem into a single, overly complicated optimization system. Contrary to that, this paper presents a novel workflow that defines precise design steps and applies optimizations only if suitable. Furthermore, this method can generate relevant results for factory planning design problems with contradicting factors, making it a promising approach for the complex challenges of i.e. resource-efficient building.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_4
id sigradi2021_4
authors Song, Yang, Koeck, Richard and Luo, Shan
year 2021
title [AR]OBOT: the AR-Assisted Robotic Fabrication System for Parametric Architectural Structures
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1115–1126
summary [AR]OBOT tries to assist the robotic fabrication process for parametric architectural structures with Augmented Reality (AR) technology to explore new possibilities for easy architectural robotic operations. Due to the lack of computer programming skills and the disconnection between design and fabrication, architects are hampered in the robotic operation process. As part of our project, we create a visualization prototype in which robotic and on-site related information is being shown through AR devices overlapping on the physical world; followed by a robotic trajectory planning method in which designers’ gestures are being identified by AR as location nodes and calculated with the obstacle avoidance system; and an operation process in which robots are being controlled by human gestures and interactions with holographic simulation to enhance the robotic fabrication process efficiency and safety. In this paper, we share the preliminary results to demonstrate a new kind of AR-assisted workflow for the architects to perform the robotic fabrication of parametric architectural structures intuitively.
keywords Augmented Reality, Robotic Fabrication, Human-robot Collaboration
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_047
id ecaade2021_047
authors Zhang, Xiao, Yuan, Chao, Yang, Liu, Yu, Peiran, Ma, Yiwen, Qiu, Song, Guo, Zhe and Yuan, Philip F.
year 2021
title Design and Fabrication of Formwork for Shell Structures Based on 3D-printing Technology
doi https://doi.org/10.52842/conf.ecaade.2021.1.487
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 487-496
summary Shell structure is a kind of structure using a small amount of materials to obtain a large-span multi-functional space. However, lots of formwork and scaffold materials are often wasted in the construction process. This paper focuses on the shell structure construction using robotic 3D printing PLA (an environmental friendly material) technology as the background. The author explores the possibility of 3D printing technology in shell construction from small scale models in different construction method, and gradually optimizes the shell template shape suitable for PLA material in full-scale construction. Finally, the research team chose the bending-active 3D printing type and completed the construction of three full-scale concrete shell molds. Under the guidance of professor Philippe Block, the research team finished the final 3D printing mold with optimized slicing and bending logic and successfully used it as the template mold to carry the tiles which proved the feasibility of this construction method.
keywords Shell structure ; Formwork ; Geometric analysis; Form-finding; 3d printing
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2021_116
id ecaade2021_116
authors Zhao, Jiangyang, Lombardi, Davide, Chen, Hanmei and Agkathidis, Asterios
year 2021
title Reinterpretation of the Dougong Joint by the use of Parametric Tools and Robotic Fabrication Techniques
doi https://doi.org/10.52842/conf.ecaade.2021.2.233
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 233-242
summary Traditionally, Chinese architecture was based on the use of timber frameworks as structural system. The Dougong joint is amongst the typical connection typologies, widely applied in the timber heritage buildings in China. Each component of the Dougong (bucket-arch joint) conforms to a strict structural proportion in addition to simple but efficient connection methods between its different components. However, the spread of the structure in modern architecture is limited due to high labour cost. Parametric design and digital fabrication techniques have greatly promoted the development of complex timber structures in recent years, which could be introduced in order to reinterpret the Dougong joint. In continuation of our research on exploring the application of robotic technologies for the fabrication of traditional Chinese timber joints, our paper will investigate the feasibility of the structural logic of the Dougong and how it could be applied in a modern timber framework structure.
keywords Dougong joint; timber structures; parametric design; robotic fabrication; optimization algorithm; topology optimization
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_144
id caadria2021_144
authors Zhu, Lufeng, Wibranek, Bastian and Tessmann, Oliver
year 2021
title Robo-Sheets - Double-Layered Structure Based on Robot-Aided Plastic Sheet Thermoforming
doi https://doi.org/10.52842/conf.caadria.2021.1.643
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 643-652
summary Computational design, in combination with robotic fabrication, allows the exploration of complex geometrical differentiation. Notably, thermoplastic sheet materials offer great potential for explorations in robotic fabrication due to their mailable qualities. However, the production of complex shapes from flat-sheet-thermoplastic materials usually depends on molds or on time-consuming procedures. This paper introduces a workflow for the design and fabrication of a double-curved surface made from plastic sheets, which develops a self-supporting structure through using robot-aided one-punch thermoforming. The thickness of a double-curved surface is optimized by applying the Finite Element Method. Notably, forming thermoplastic into a minimal surface strengthens its mechanical properties and this takes a relatively short period of time. According to the relationship between moment and stress in section, two connected minimal-surfaces form a three-dimensional I-profile, making it possible to construct a highly material-efficient structure. Unlike the normal form-finding process, the structure is not limited to compression-only geometry. Compared to thermoforming methods such as Single Point Incremental Forming (SPIF), our one-punch forming process described in this paper shows demonstrates high precision while being less time-consuming. Here, we present a one-to-one scale working prototype as proof of our approach.
keywords Robotic fabrication; Plastic sheet thermoforming; Lightweight structure; Self-supporting structure; Minimal surface
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2021_085
id ecaade2021_085
authors Apolinarska, Aleksandra Anna, Kuhn, Mathias, Gramazio, Fabio and Kohler, Matthias
year 2021
title Performance-Driven Design of a Reciprocal Frame Canopy - Timber structure of the FutureTree
doi https://doi.org/10.52842/conf.ecaade.2021.1.497
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 497-504
summary This paper presents the design process of a recently built, 107 m2 free-form timber frame canopy. The structure is an irregular, funnel-shaped reciprocal frame resting on a central concrete column, and has been fabricated using a robot-based assembly process. The project addresses several known design and fabrication challenges: modelling of free-form reciprocal frames, complex interrelations between their geometry and structural behaviour, as well as develops custom software tools to represent different models and interface design and structural analysis environments. The performance-driven design is exemplified by studies on the relationship between geometric parameters of the reciprocal frame and the resulting force-flow and flexural stiffness of the structure. The final design is obtained by differentiating geometry and stiffness to reduce deflection and tensile stresses while observing fabrication constraints.The project demonstrates the application of computational design to create customized, performance-driven and robotically fabricated structures, and its successful realization validates the methods under real-life planning and construction conditions.
keywords Integrated computational design ; Performance-based design ; Reciprocal frames ; Timber structures; Robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2021_222
id ecaade2021_222
authors Azambuja Varela, Pedro, Sousa, José Pedro and Silva Dias, Joana
year 2021
title Drawing-to-Factory Process - Using freehand drawing to drive robotic assembly of brick walls
doi https://doi.org/10.52842/conf.ecaade.2021.1.189
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 189-194
summary The developments of digital technology applied to architecture in the recent decades has allowed for direct communication from the studio to fabrication. However, this process is typically dependent on complicated computational processes, enlarging the distance from the benefits of the traditional drawing approaches employed by architects. This research intends to explore possibilities of reenacting the drawing as a means of computational generative design which feeds automated systems of construction. By using a Cobot directed by an algorithm which reads a simple drawn curve on paper, an automated brick wall is built, as demonstrated in two exhibitions. This mixed approach allows for technology in architectural design and construction to be more accessible to a wider audience, while blurring the boundaries between concept and materialization.
keywords robotic assembly; human-robot collaboration; non-standard structures; digital fabrication; computational design; interactive fabrication
series eCAADe
email
last changed 2022/06/07 07:54

_id cdrf2021_368
id cdrf2021_368
authors B. Bala Murali Kumar, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo
year 2021
title Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_34
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary The additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_005
id caadria2021_005
authors Bedarf, Patrick, Martinez Schulte, Dinorah, Şenol, Ayça, Jeoffroy, Etienne and Dillenburger, Benjamin
year 2021
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel
doi https://doi.org/10.52842/conf.caadria.2021.1.603
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 603-612
summary This paper presents the design and fabrication of a lightweight composite facade shading panel using 3D printing (3DP) of mineral foams. Albeit their important role in industrial construction practice as insulators and lightweight materials, only little research has been conducted to use foams in 3DP. However, the recent development of highly porous mineral foams that are very suitable for extrusion printing opens a new chapter for development of geometrically complex lightweight building components with efficient formwork-free additive manufacturing processes. The work documented in this paper was based on preliminary material and fabrication development of a larger research endeavor and systematically explored designs for small interlocking foam modules. Furthermore, the robotic 3D Printing setup and subsequent processing parameters were tested in detail. Through extensive prototyping, the design space of a final demonstrator shading panel was mapped and refined. The design and fabrication process is documented and shows the potential of the novel material system in combination with fiber-reinforced ultra-high performance concrete (UHPC). The resulting composite shading panel highlights the benefits of using mineral foam 3DP to fabricate freeform stay-in-place formwork for lightweight facade applications. Furthermore, this paper discusses the challenges and limitations encountered during the project and gives a conclusive outlook for future research.
keywords robotic 3d-printing; mineral foam; lightweight construction; concrete formwork; facade shading panel
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_721291 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002