CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id ecaade2021_251
id ecaade2021_251
authors Carvalho, Joao, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title Ceramic AM Gantry Structures - Discretisation and connections between beams and columns
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 483-492
doi https://doi.org/10.52842/conf.ecaade.2021.2.483
summary The manufacture of architectural components driven by digital design tools and Additive Manufacturing (AM) allows the achievement of highly evolved constructive systems, more integrated into a specific reality to which it is intended to respond, resulting in unique and adapted solutions with high geometric and material performances. Considering the application of these methods to common structural elements, namely beams and columns, for which there are already several examples demonstrating their feasibility, we find that it is necessary to provide a sound answer to an element that is fundamental for these proposals to function together as a single system - the moment of connection between beams and columns. In this sense, this paper proposes the design and test of a set of connections with adapted geometry between beams and columns, produced through ceramic Liquid Deposition Modelling (LDM), applying logics of topological optimization. This work foresees the development of a constructive system that incorporates reversible and irreversible connections, being formalised in a set of gantry structures formed by two vertical elements and a horizontal one, giving the comparative model between digital design and manufacture methods and the traditional ones.
keywords Ceramic AM; Performative design; Computational design; Connections; Ceramic gantry structure
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2021_113
id caadria2021_113
authors Fink, Theresa, Vuckovic, Milena and Petkova, Asya
year 2021
title KPI-Driven Parametric Design of Urban Systems
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 579-588
doi https://doi.org/10.52842/conf.caadria.2021.2.579
summary We present a framework for data-driven algorithmic generation and post-evaluation of alternative urban developments. These urban developments are framed by a strategic placement of diverse urban typologies whose spatial configurations follow design recommendations outlined in existing building and zoning regulations. By using specific rule-based generative algorithms, different spatial arrangements of these urban typologies, forming building blocks, are derived and visualized, given the aforementioned spatial, legal, and functional regulations. Once the envisioned urban configurations are generated, these are evaluated based on a number of aspects pertaining to spatial, economic, and thermal (environmental) dimensions, which are understood as the key performance indicators (KPIs) selected for informed ranking and evaluation. To facilitate the analysis and data-driven ranking of derived numeric KPIs, we deployed a diverse set of analytical techniques (e.g., conditional selection, regression models) enriched with visual interactive mechanisms, otherwise known as the Visual Analytics (VA) approach. The proposed approach has been tested on a case study district in the city of Vienna, Austria, offering real-world design solutions and assessments.
keywords Urban design evaluation; parametric modelling; urban simulation; environmental performance; visual analytics
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_157
id caadria2021_157
authors Huang, Xiaoran, Kimm, Geoff and Burry, Mark
year 2021
title Exploiting game development environments for responsive urban design by non-programmers - melding real-time ABM pedestrian simulation and form modelling in Unity 3D
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 689-698
doi https://doi.org/10.52842/conf.caadria.2021.2.689
summary Precinct-level pedestrian simulation often requires moderate to high-level modelling skills with a steep learning curve, and is usually non-flexible, time-consuming and exclusive of the broader public community. Confronting these problems, our research investigates a novel and agile workflow to test precinct pedestrian behaviours by melding agent-based simulation (ABM) and responsive real-time form modelling mechanisms within accessible visualisation of city and precinct environments in a game engine, Unity 3D. We designed an agent system prototype of configurable and interoperable nodes that may be placed in an urban modelling scenario. Realtime CSG, a fast polygon-based modelling plugin, is also introduced to our workflow where users can use the evidence observed when running a scenario to quickly adjust the street morphology and buildings in response. In this process, end users are kept in the design loop and may make critical adjustments, whereby a responsive, collective, informed design agenda for our built environments can inform more detailed outcomes of pedestrian behaviour and action and promote more efficient collaborations for both professionals and local communities.
keywords Agent-based pedestrian simulation; responsive modelling; computer-aided urban design; public participation
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2021_284
id ecaade2021_284
authors Luis, Orozco, Krtschil, Anna, Wagner, Hans-Jakob, Simon, Bechert, Amtsberg, Felix, Skoury, Lior, Knippers, Jan and Menges, Achim
year 2021
title Design Methods for Variable Density, Multi-Directional Composite Timber Slab Systems for Multi-Storey Construction
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 303-312
doi https://doi.org/10.52842/conf.ecaade.2021.1.303
summary This paper presents an agent-based method for the design of complex timber structures. This method features a multi-level agent simulation, that relies on a feedback loop between agent systems and structural simulations that update the agent environment. Such an approach can usefully be applied for the design of variable density timber slab systems, where material arrangements based on structural, fabrication, and architectural boundary conditions are necessary. Such arrangements can lead to multi-directional spanning slabs that can accept pointwise supports in unique layouts. We discuss the implementation of such a method on the basis of the structural design of a pavilion-scale multi-storey testing setup. The presented method enables a more versatile approach to the design of multi-storey timber buildings, which should increase their applicability to a diverse range of building typologies.
keywords Agent-Based Modelling; Robotic Timber Construction; Computational Design; Multi-Storey Timber Buildings
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_307
id caadria2021_307
authors Ortner, Frederick Peter and Tay, Jing Zhi
year 2021
title Pandemic resilient housing - modelling dormitory congestion for the reduction of COVID-19 spread
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 589-598
doi https://doi.org/10.52842/conf.caadria.2021.2.589
summary In response to pandemic-related social distancing measures, this paper presents a computational model for simulating resident congestion in Singapores migrant worker dormitories. The model is presented as a tool for supporting evidence-based building design and management. In contrast to agent-based or network-based building analysis, we demonstrate a method for implementing a schedule-based building simulation. In this paper we present the key functions and outputs of the computational model as well as results from analysis of a case study and its design variants. Learnings on the comparative advantages of schedule modification versus physical design modification in assisting social distancing are presented in a discussion section. In the conclusion section we consider applications of our learnings to other dense institutional buildings and future directions for evidence-based design for resilient buildings.
keywords Collective,collaborative & interdisciplinary design; Computational design research & education; Disrupted practices,resilience,and social sustainability; Simulation,visualization and impact projection
series CAADRIA
email
last changed 2022/06/07 08:00

_id ijac202119202
id ijac202119202
authors Ostrowska-Wawryniuk, Karolina
year 2021
title Prefabrication 4.0: BIM-aided design of sustainable DIY-oriented houses
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 142–156
summary In the context of continuous housing shortage, increasing construction standards and rising labour costs, one of the possibilities to address this array of problems is prefabrication directed towards do-it-yourself (DIY) construction methods. This paper presents a prototype tool for aiding the design of DIY-oriented single-family houses with the use of small-element timber prefabrication. The introduced solution uses the potential of BIM technology for adapting a traditionally designed house to the prefabrication requirements and reduction of waste generated in the assembly process. The experimental tool was developed in the Autodesk Revit software. It incorporates custom Dynamo-for-Revit scripts. The experimental tool implemented the user- and technology-specified boundary conditions and converted an input BIM model into a prefabricated alternative. The tool was tested on the design of a two-story single-family house. The results compare the automated optimized panelization with manual approach. The simulation revealed the possibility of the construction waste reduction by at least 50% when comparing to the non-optimized panelization.
keywords DIY construction, prefabricated house, timber prefabrication, small-panel prefabrication, BIM-aided panelization, Building Information Modelling
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_283
id caadria2021_283
authors Sanatani, Rohit Priyadarshi, Chatterjee, Shamik Sambit and Manna, Ishita
year 2021
title Subject-specific Predictive Modelling for Urban Affect Analysis
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 387-396
doi https://doi.org/10.52842/conf.caadria.2021.2.387
summary Recent developments in crowd-sourced data collection and machine intelligence have facilitated data-driven analyses of the affective qualities of urban environments. While past studies have focused on the commonalities of affective experience across multiple subjects, this paper demonstrates an integrated framework for subject-specific affective data collection and predictive modelling. For demonstration, 10 field observers recorded their affective appraisals of various urban environments along the scales of Liveliness, Beauty, Comfort, Safety, Interestingness, Affluence, Stress and Familiarity. Data was collected through a mobile application that also recorded geo-location, date, time of day, a high resolution image of the users field of view, and a short audio clip of ambient sound. Computer vision algorithms were employed for extraction of six key urban features from the images - built score, paved score, auto score, sky score, nature score, and human score. For predictive modelling, K-Nearest Neighbour and Random Forest regression algorithms were trained on the subject-specific datasets of urban features and affective ratings. The algorithms were able to accurately assess the predicted affective qualities of new environments based on the specific individuals affective patterns.
keywords Urban Affect; Subjective Experience; Predictive Modelling; Affect Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_171
id ecaade2021_171
authors Woessner, Uwe, Kieferle, Joachim and Djuric, Marko
year 2021
title Operating Room Design with BIM, VR, AR, and Interactive Simulation
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 49-58
doi https://doi.org/10.52842/conf.ecaade.2021.2.049
summary Operating room design is a complex planning task. In order to jointly find the best solution, specialists from numerous professions are involved in the planning process, since e.g. equipment layout and airflow is crucial for optimal surgical procedures. For a better and more informed discussion, and thus better optimization and firm decisions, we have developed a method linking BIM (Building Information Modelling), VR (Virtual Reality), AR (Augmented Reality), CFD (Computational Fluid Dynamics) simulation, and a tangible user interface, so that freely configurable layouts can be tested interactively, be discussed, and optimized both in model and 1:1 scale already in early planning phases. This method has been applied to a hospital design with 33 new operating rooms, differing in sizes as well as layouts according to the different types of operations.
keywords Operating Room Design; Interactive Simulation; Virtual Reality; Augmented Reality; Tangible User Interface; BIM
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2021_332
id ecaade2021_332
authors Rust, Romana, Xydis, Achilleas, Frick, Christian, Strauss, Jürgen, Junk, Christoph, Feringa, Jelle, Gramazio, Fabio and Kohler, Matthias
year 2021
title Computational Design and Evaluation of Acoustic Diffusion Panels for the Immersive Design Lab - An acoustic design case study
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 515-524
doi https://doi.org/10.52842/conf.ecaade.2021.1.515
summary Acoustic performance is an important criterion for architectural design. Much is known about sound absorption, but little about sound scattering, although it is equally important for improving the acoustic quality of built spaces. This paper presents an alternative workflow for the computational design and evaluation of acoustic diffusion panels, which have been developed and realized in a real building project - the Immersive Design Lab (IDL). This workflow includes a computational design system, which is integrated with a rough acoustic evaluation method for fast performance feedback, as well as the assessment of acoustic performance with an experimental measurement setup, and the post-processing of a selected design instance for fabricability. The paper illustrates and discusses this workflow on the basis of the presented design study.
keywords Architectural Acoustics; Performance-based Design; Digital Workflow
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ijac202119101
id ijac202119101
authors Budig, Michael; Oliver Heckmann, Markus, Hudert, Amanda Qi Boon Ng, Zack Xuereb Conti, and Clement Jun Hao Lork
year 2021
title Computational screening-LCA tools for early design stages
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 6–22
summary Life Cycle Assessment (LCA) has been widely adopted to identify the Global Warming Potential (GWP) in the construction industry and determine its high environmental impact through Greenhouse Gas (GHG) emissions, energy and resource consumptions. The consideration of LCA in the early stages of design is becoming increasingly important as a means to avoid costly changes at later stages of the project. However, typical LCA-based tools demand very detailed information about structural and material systems and thus become too laborious for designers in the conceptual stages, where such specifications are still loosely defined. In response, this paper presents a workflow for LCA-based evaluation where the selection of the construction system and material is kept open to compare the impacts of alternative design variants. We achieve this through a strict division into support and infill systems and a simplified visualization of a schematic floor layout using a shoebox approach, inspired from the energy modelling domain. The shoeboxes in our case are repeatable modules within a schematic floor plan layout, whose enclosures are defined by parametric 2D surfaces representing total ratios of permanent supports versus infill components. Thus, the assembly of modular surface enclosures simplifies the LCA evaluation process by avoiding the need to accurately specify the physical properties of each building component across the floor plan. The presented workflow facilitates the selection of alternative structural systems and materials for their comparison, and outputs the Global Warming Potential (GWP) in the form of an intuitive visualization output. The workflow for simplified evaluation is illustrated through a case study that compares the GWP for selected combinations of material choice and construction systems.
keywords Computational life cycle assessment tool, embodied carbon, parametric design, construction systems, global warming potential
series journal
email
last changed 2021/06/03 23:29

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_202
id ecaade2021_202
authors Campos, Tatiana, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title The Use of Natural Materials in Additive Manufacturing of Buildings Components - Towards a more sustainable architecture
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 355-364
doi https://doi.org/10.52842/conf.ecaade.2021.1.355
summary The demand for sustainable building materials is currently a major concern of society. It is known that the traditional construction industry requires a high consumption of inorganic materials, which is associated with the excessive production of waste. Thus, this article intends to demonstrate the possibility of using the Additive Manufacturing (AM) technique Paste Extrusion Modeling (PEM) in the production of reusable, biodegradable and recyclable construction systems, using a combination of different natural materials that have created multiple pastes with different additives.Cellulose is a natural material - biodegradable, recyclable and low cost - and its implementation aims to change some aspects of the current state of the construction sector and can have a real impact on the exploration of innovative solutions and more sustainable alternative building systems. The integration of AM techniques, PEM method, supported by computational modelling tools, will allow the definition of a building system and its components. Depending on the material used - natural materials or biomaterials - the constraints and limitations of AM will be considered.
keywords Cellulose; Natural Fibers; Additive Manufacturing; Sustainable Construction
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2021_115
id sigradi2021_115
authors Canestrino, Giuseppe, Miraglia, Simone, Perri, Giuseppe and Lucente, Roberta
year 2021
title Parametric Strategies in an Architectural Design Workshop
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 511–522
summary Digital instruments are among the means of production of architecture. This improved productivity and reduced errors and inaccuracies in architectural design; however, in the case of parametric design, there is the risk of mistaking tools that may improve the overall quality of architecture for an approach that, as intrinsically scientific, guarantees quality architecture. This misunderstanding may characterise students’ first experience with parametric modelling. Therefore, a workshop has been developed as a seed to unfold the formal potentiality of parametric modelling with limited methodological bias and to inform on what to expect from parametric modelling. The workshop results show a preference for some parametric strategies over others. This tendency can be linked to those morphologies that, due to collective bias, are perceived as parametric; Consequently, the importance of working simultaneously on technical competence and cultural aspects of parametric architecture emerges as a necessity.
keywords architectural design education, CAAD, parametric design.
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_038
id caadria2021_038
authors Chen, Jielin and Stouffs, Rudi
year 2021
title From Exploration to Interpretation - Adopting Deep Representation Learning Models to Latent Space Interpretation of Architectural Design Alternatives
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.1.131
summary An informative interpretation of the hyper-dimensional design solution space can potentially enhance the cognitive capacity of designers with respect to both conventional design practice and the research domain of computational-aided generative design. However, the hitherto research of design space exploration has had limited focus on the interpretation of the hyper solution space per se due to the knowledge gap pertaining to representation and generation. Representation learning techniques, as a core paradigm in the statistically empowered domain of machine learning, possess the capability of extracting a convoluted probabilistic distribution of hyperspace with latent features from unorganized data sources in a generalized manner, which can be an intuitive modus operandi for a structural interpretation of the intricate latent design solution space and benefit the challenging task of architectural design exploration. We examine and demonstrate the potential capabilities of representation learning techniques for the interpretation of latent architectural design solution space with consideration of disentanglement and diversity.
keywords Design space exploration; latent space interpretation; representation learning; deep generative modelling; generative architectural design
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.2.131
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ijac202119203
id ijac202119203
authors Dounas, Theodoros; Davide Lombardi, Wassim Jabi
year 2021
title Framework for decentralised architectural design BIM and Blockchain integration
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 157–173
summary The paper introduces a framework for decentralised architectural design in the context of the fourth industrial revolution. We examine first the constraints of building information modelling in regard to collaboration and trust. We then introduce Blockchain infrastructure as a means for creating new operational and business models for architectural design, through project governance, scaling collaboration nominally to thousands of agents, and shifting trust to the infrastructure rather than the architectural design team. Through a wider consideration of Blockchains in construction projects we focus on the design process and validate our framework with a prototype of BIM design optimisation integrated with a Blockchain mechanism. The paper concludes by outlining the contributions our framework can enhance in the building information modelling processes, within the context of the fourth industrial revolution.
keywords Blockchain, Building Information Modelling, trust, design collaboration, governance, Integrated Project Delivery, incentives, Ethereum
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_301
id caadria2021_301
authors Goepel, Garvin and Crolla, Kristof
year 2021
title Secret Whispers & Transmogrifications:a case study in online teaching of Augmented Reality technology for collaborative design production.
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 21-30
doi https://doi.org/10.52842/conf.caadria.2021.2.021
summary This paper focusses on teaching the integration of Augmented (AR) and Mixed Reality (MR), combined referred to as Extended-Reality (XR), and photogrammetry technology into handicraft using an online-taught digital fabrication workshop as an educational case study. Set up in response to restrictions from Covid-19, workshop 'Secret Whispers & Transmogrifications' had students and instructors around the world participate in a course that challenged our understanding of educating craft and technology without the necessity of physical presence. The integration of AR into craftsmanship enhances architectural design and fabrication processes as it overlays computation-driven information onto the hands of the end user. These computer-numerically-controlled workflows incorporate and rely on manual actions as an integral part of a process that is typified by inevitable, unpredictable, human error. In doing so, the workshop questions common infatuation with precision in digital fabrication and construction by striving for alternative approaches that embrace the inaccuracies and imprecisions innate to technologically-augmented human craftsmanship. Participants took part in a hands-on clay modelling 'secret whispers' experiment that was designed to introduce theoretical concepts and applications of XR technology into the production workflows. This paper concludes by highlighting that the accessibility of today's technology enables AR-enhanced craftsmanship to be successfully taught remotely and online.
keywords collaborative design; augmented-reality ; mixed reality ; human-computer interaction ; tolerances and error
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac202119407
id ijac202119407
authors Haeusler, Matthias H.; Gardner, Nicole; Yu, Daniel K.; Oh, Claire; Huang, Blair
year 2021
title (Computationally) designing out waste: Developing a computational design workflow for minimising construction and demolition waste in early-stage architectural design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 594–611
summary In the architecture, engineering and construction (AEC) industry, waste is oft framed as an economic problemtypically addressed in a building’s construction and demolition phase. Yet, architectural design decision-making can significantly determine construction waste outcomes. Following the logic of zero waste, thisresearch addresses waste minimisation‘at the source’. By resituating the problem of construction wastewithin the architectural design process, the research explores waste as a data and informational problem in adesign system. Accordingly, this article outlines the creation of an integrated computational design decisionsupport waste tool that employs a novel data structure combining HTML-scraped material data and historicbuilding information modelling (BIM) data to generate waste evaluations in a browser-based 3D modellingplatform. Designing an accessible construction waste tool for use by architects and designers aims to heightenawareness of the waste implications of design decisions towards challenging the systems of consumption andproduction that generate construction and demolition waste.
keywords Construction and demolition waste, waste minimisation, zero waste, BIM databases, design process, designmanagement, web scraping, computational design, software product development
series journal
email
last changed 2024/04/17 14:29

_id ecaade2021_187
id ecaade2021_187
authors Lacroix, Igor, Furtado Lopes, Gonçalo and Sousa, José Pedro
year 2021
title Integrating Sociological Survey and Algorithmic Modelling for Low-Cost Housing
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 445-454
doi https://doi.org/10.52842/conf.ecaade.2021.1.445
summary This paper presents a study developed in the scope of an ongoing research about the creation of an architectural design system of low-cost housing in Portugal's context. Its goal is to present the survey, analysis and digitization work of a research carried out in the 1960s by Portuguese architect Nuno Portas, with the help of architect Alexandre Alves Costa. The method was to convert mathematical information contained in Portas' and Alves Costa's report from Lisbon's National Laboratory of Civil Engineering (LNEC) into an algorithmic model with Rhinoceros® and Grasshopper® software. Besides revealing for the first time a comprehensive study of this pioneering work, this paper will set the foundations to propose the adaptation of its process into low-cost housing design. The result presented here is an algorithm for selecting the best architectural type from a database of housing floor plans, analyzed by a questionnaire regarding the inhabitants' needs and satisfactions.
keywords sociological survey; algorithmic modelling; low-cost housing; Nuno Portas; Alexandre Alves Costa
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_353556 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002