CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 599

_id ecaade2021_273
id ecaade2021_273
authors Dania, Panagiota, Theodoropoulou, Helena G., Karagianni, Anna, Geropanta, Vasiliki and Parthenios, Panagiotis
year 2021
title Enhancing User Experience through Interaction Design - Rethinking the municipal agora of Chania through AR narratives
doi https://doi.org/10.52842/conf.ecaade.2021.2.263
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 263-272
summary This paper examines the relationship between designing interactive experiences based on new technologies and the process of architectural narration. It highlights the idea of rethinking a building with historical, architectural and functional value, as an experience and a journey. Referring to the historic building of the Municipal Market of Chania, Greece and using the conceptual idea of designing through narratives, it delineates the process of integrating new technologies into the process of designing a spatial and temporal experience. Exploiting Augmented Reality, we design an application implementing a digital layer with architectural and historical content, that is integrated into reality, improving the on-site visit, providing enhanced understanding of the building and introducing experiential visitor-building interaction. The application is available through mobile devices and the proposed system is evaluated by a group of users showing the positive effects of the use of interactive technologies in redesigning the experience of a space.
keywords Mobile AR; cultural dissemination; architectural narration; interactive spatial experiences; interactive visualization
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2021_93
id sigradi2021_93
authors Deon, Luisa, Isele, Priscila, Arena, Alana and Mussi, Andrea
year 2021
title Codesign and Digital Fabrication: Applications in the Project Process with Visually Impaired People and Children
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 981–992
summary The Co-design method has great relevance in the inclusion of different classes of users in the Design Process (DP), such as Visually Impaired People (PwDS) and children. This work indicates results of three Co-design dynamics. Focus Group, guided tour, semi-structured interviews, questionnaires and workshops were carried out, as strategies for the inclusion of different users in the DP. The process of designing an inclusive signage board for PwDS is presented. Next, the project of inclusive playgrounds for visually impaired children. Finally, an activity carried out with basic education students, combining new technologies in the child's learning process. Participants were encouraged to express their knowledge through different tools that adapted to their reality. The results show the importance of including different methods, tools and resources to support the DP. In addition, Digital Fabrication and Prototyping are techniques that enhance Co-design, as they act as congratulators for communication between the designer and users.
keywords Codesign, Fabricaçao Digital, Inclusao, Processo de Projeto. Projeto Colaborativo.
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_68
id sigradi2021_68
authors Filgueira Dias, Cristina and Portugal do Nascimento, Luís Cláudio
year 2021
title Inductive Creative Processes within Ideation Phases of Digital Design Products
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 463–473
summary This article aims to identify and analyze inductive aspects (those which go from particular instances to the general configuration) present in ideation phases of digital design projects (such as apps, websites and tools for companies’ internal communications), with special emphasis on how induction occurs in creative processes. Using a qualitative methodological approach, the analysis is based on in-depth, semi-structured interviews with digital designers, on a literature review on the subjects of creativity and classic design method, as well as on a design documentary. Research findings suggest the importance of combining the use of verbal and visual communication resources in group dynamics; the need for designers to be highly proficient in the tools and techniques used while generating new alternatives, regardless of their physical/analogical or virtual/digital nature; and to allocate, whenever possible, ample time to explore ideas in order to push the limits of each project being developed.
keywords Design method, digital design products, inductive processes, creative processes, creativity techniques
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ecaade2021_106
id ecaade2021_106
authors Agirbas, Asli and Basogul, Elif Feyza
year 2021
title Structural Performance of Reciprocal Structures formed by using Islamic Geometrical Patterns
doi https://doi.org/10.52842/conf.ecaade.2021.2.391
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 391-400
summary Many Islamic geometric patterns consist of stripes which are recognizable in the two dimensional patterns. These stripes systematically pass over or under each other, thus they create a tessellation. This system has the same principle with reciprocal frame structures. Considering this situation, in this study, it is aimed to lift the two dimensional Islamic geometric patterns to the third dimension with the principle of reciprocal frame structures. A selected Islamic geometric pattern has been lifted to the third dimension in the reciprocal structure principle, and structural analyzes have been performed.
keywords Reciprocal frame structures; Islamic geometric patterns; Structural analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_177
id ecaade2021_177
authors Aksin, Feyza Nur and Arslan Selçuk, Semra
year 2021
title Use of Simulation Techniques and Optimization Tools for Daylight, Energy and Thermal Performance - The case of office module(s) in different climates
doi https://doi.org/10.52842/conf.ecaade.2021.2.409
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 409-418
summary In recent years, performance-based design has become the key issue behind design decisions in the construction industry towards reducing energy consumption. Various simulation techniques and optimization tools have started to be used together for performance objectives to reach optimal solutions for complex design process. In the sector, one of the most energy-consuming buildings is offices. This study examines the effects of integration of simulation programs and optimization tools on the daylight, energy and thermal performances of office buildings on different climates. Two cities, Ankara and Izmir, in Turkey selected as locations. The study is carried out with total of thirteen parameters. With Rhinoceros/Grasshopper software, Honeybee, Ladybug and Octopus plug-ins used for daylight, energy and thermal simulation and performance optimization. With the results obtained, the optimal configurations related with selected parameters are determined for reducing energy consumption while improving daylight and thermal performance on different climates.
keywords daylight, energy and thermal comfort performance; multi-objective optimization; performance-based design; office buildings
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_071
id ascaad2021_071
authors Al Maani, Duaa; Saba Alnusairat, Amer Al-Jokhadar
year 2021
title Transforming Learning for Architecture: Online Design Studio as New Norm for Crises Adaptation Under COVID-19
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 129-141
summary For students, studying architecture necessitates a fundamental shift in learning mode and attitude in the transition from school. Beginner students are often surprised by the new mode of learning-by-doing and the new learner identity that they must adopt and adapt to in the design studio. Moreover, due to the COVID-19 pandemic, architecture teaching has moved online. Both instructors and students are experiencing dramatic changes in their modes of teaching and learning due to the sudden move from on-campus design studios to a virtual alternative, with only the bare minimum of resources and relevant experience. This study explored the virtual design studio as a transformative learning model for disaster and resilience context, including the factors that affect foundation students’ perceptions and experiences of the quality of this adaptation. Data obtained from 248 students who took online design studios during the lockdown in 15 universities in Jordan highlight many factors that make the experience of the online design studio more challenging. Despite these challenges, strongly positive aspects of the online studio were evident and widely discussed. A model of hyper-flexible design studio in which students can have a direct contact with their instructors when needed – in addition to online activities, reviews, and written feedback – is highly recommended for the beginner years. This HyFlex model will enrich students’ learning and understanding of the fundamentals of design and ensure that technology solutions deliver significant and sustainable benefits.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_234
id sigradi2021_234
authors Al Nouri, Mhd Ziwar, Baghdadi, Bilal and Khateeb, Nairooz
year 2021
title Re-coding Post-War Syria: The Role of Data Collection & Objective Investigations in PostWar Smart City
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 127–145
summary Re-coding post-war Syria is an ongoing research and data platform, focused on innovation and collecting comprehensive, infrastructural and socioeconomic analytics, synchronization data, by using AI driven to give a more transparent image of innovating a new methodology to regenerate the future of post-war smart cities into advanced and sustainable urban environments in a smarter way (Fig. 1). The pressure to achieve a rapid Post-war smart city without clear strategy and comprehensive analysis of all aspects will cause a particularly catastrophic collapse in the interconnected social structure, services, education and health care system, leaving a long-term impact on the society. This paper presents the current status of the Research & Documentation methodology in the Data Collection phase by the objective investigations conducted through a series of local and international workshops species developed in this research called “Re-Coding“, offering consequent direct ground surveys, statistics and documentation study of the targeted areas, merging professionalism and youth power with local community to detect an open source data used as a tool to re-generate a precarious area towards a new methodology.
keywords Post-War Smart cities, Collecting Data, Local community, Objective Investigations, Artificial intelligence
series SIGraDi
email
last changed 2022/05/23 12:10

_id ecaade2021_130
id ecaade2021_130
authors Alassaf, Nancy and Clayton, Mark
year 2021
title The Use of Diagrammatic Reasoning to Aid Conceptual Design in Building Information Modeling (BIM)
doi https://doi.org/10.52842/conf.ecaade.2021.2.039
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 39-48
summary Architectural design is an intellectual activity where the architect moves from the abstract to the real. In this process, the abstract represents the logical reasoning of how architectural form is configured or structured, while the real refers to the final physical form. Diagrams become an integral part of the conceptual design stage because they mediate between those two realms. Building Information Modeling (BIM) can reallocate the effort and time to emphasize conceptual design. However, many consider BIM a professionally-oriented tool that is less suitable for the early design stages. This research suggests that architectural design reasoning can be achieved using constraint-based parametric diagrams to aid conceptual design in BIM. The study examines several techniques and constructs a framework to use diagrams in the early design stages. This framework has been investigated through Villa Stein and Citrohan House by Le Corbusier. This study addresses two roles of diagrams: the generative role to create various design solutions and the analytical one to conduct an early performance study of the building. Our research contributes to the discussion on the ways designers can use digital diagrams to support the architectural design process.
keywords Building Information Modeling (BIM); Performance analysis ; Architectural Form; Diagram; Parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2021_283
id sigradi2021_283
authors Alexandrino, Joao Victor Mota, Amorim, Leonardo Edson, Muniz, Vinícius Fernandes and Leite, Raquel Magalhaes
year 2021
title Architecture and Context: A Data-based Approach to Optimize Climate Performance of Built Facades
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1139–1150
summary The present research stems from a critical reflection about the environmental adaptability of existing building envelopes. The main goal is to explore how to balance environmental optimization with contextual constraints, using modularity, flexibility and mass customization as guiding principles. An application study was carried out with the development of a second skin proposal aligned with the use and context of the building under study. For this purpose, simulations that assess environmental conditions were developed within a visual programming tool, not only feeding the design process with essential information, but also providing a flexible creative process. Results show that such simulations allow the designer to interpret these studies more accurately, reducing the iterative guesswork, since in this workflow it is possible to transform these outputs into proposition parameters for new designs or interventions.
keywords Data-Driven Analysis, Optimization, Parametric Facade Design, Thermal performance, High-low architecture, Mass Customization, Second Skin
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2021_004
id ascaad2021_004
authors Ali, Nouran; Samir Hosny, Ahmed Abdin
year 2021
title Thermal Performance of Nanomaterials of a Medium Size Office Building Envelope: With a Special Reference to Hot Arid Climatic Zone of Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 385-396
summary Global warming is becoming a huge threat in the 21st century. The building is the main contributor to energy consumption and greenhouse gas emissions which play an important role in global warming. Using new technologies provides a step towards a better-built environment. Nanotechnology is an emerging technology that provides innovative materials that integrate with the building envelope to enhance energy efficiency and decrease energy consumption in buildings. Many Nano products are a promising candidate for building thermal insulation and increasing the building’s efficiency. This paper aims to reach minimum energy consumption by investigating Nanomaterials thermal performance on a building’s envelope in a hot arid climate. An office building in Cairo, Egypt is chosen as a case study. The paper presents an empirical/applied inquiry that is based on a computer simulation using Design Builder software. Energy consumption is calculated for different cases; the base model of the office building without using nanomaterials, and several nano models using nanomaterials. The results indicate that the use of Nanomaterials can enhance the thermal performance of the office building and save about 13.44 % of the annual energy consumption of the building.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id cdrf2021_92
id cdrf2021_92
authors Ana Zimbarg
year 2021
title Bio-Design Intelligence
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_9
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Architecture has a substantial influence worldwide as it shapes our cities, and it is made to last. Urban areas are also responsible for 70% of the world’s carbon emissions. Consequently, architects are responsible for minimising the destructive effects of construction on the environment. How can biological intelligence be inserted in architecture as a possibility to increase environmental performance? Bio-design goes further than biology-inspired approaches. Biodesign refers to incorporating living organisms as an essential component of a system, changing the natural and built environment boundaries. It contains living and machine intelligence, whether embedded in the design process or in the building itself. This paper seeks to give an overview of bio-design and how it can be seen as a strategy of thinking of new research pathways.
series cdrf
email
last changed 2022/09/29 07:53

_id cdrf2021_231
id cdrf2021_231
authors Andrea Macruz, Ernesto Bueno, Gustavo G. Palma, Jaime Vega, Ricardo A. Palmieri, and Tan Chen Wu
year 2021
title Measuring Human Perception of Biophilically-Driven Design with Facial Micro-expressions Analysis and EEG Biosensor
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_22
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary This paper investigates the role technology and neuroscience play in aiding the design process and making meaningful connections between people and nature. Using two workshops as a vehicle, the team introduced advanced technologies and Quantified Self practices that allowed people to use neural data and pattern recognition as feedback for the design process. The objective is to find clues to natural elements of human perception that can inform the design to meet goals for well-being. A pattern network of geometric shapes that achieve a higher level of monitored meditation levels and point toward a positive emotional valence is proposed. By referencing biological forms found in nature, the workshops utilized an algorithmic process that explored how nature can influence architecture. To measure the impact, the team used FaceOSC for capture and an Artificial Neural Network for micro-expression recognition, and a MindWave sensor manufactured by NeuroSky, which documented the human response further. The methodology allowed us to establish a boundary logic, ranking geometric shapes that suggested positive emotions and a higher level of monitored meditation levels. The results pointed us to a deeper level of understanding relative to geometric shapes in design. They indicate a new way to predict how well-being factors can clarify and rationalize a more intuitive design process inspired by nature.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia21_238
id acadia21_238
authors Anifowose, Hassan; Yan, Wei; Dixit, Manish
year 2021
title BIM LOD + Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2021.238
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 238-245.
summary Architectural Education faces limitations due to its tactile approach to learning in classrooms with only 2-D and 3-D tools. At a higher level, virtual reality provides a potential for delivering more information to individuals undergoing design learning. This paper investigates a hypothesis establishing grounds towards a new research in Building Information Modeling (BIM) and Virtual Reality (VR). The hypothesis is projected to determine best practices for content creation and tactile object virtual interaction, which potentially can improve learning in architectural & construction education with a less costly approach and ease of access to well-known buildings. We explored this hypothesis in a step-by-step game design demonstration in VR, by showcasing the exploration of the Farnsworth House and reproducing assemblage of the same with different game levels of difficulty which correspond with varying BIM levels of development (LODs). The game design prototype equally provides an entry way and learning style for users with or without a formal architectural or construction education seeking to understand design tectonics within diverse or cross-disciplinary study cases. This paper shows that developing geometric abstract concepts of design pedagogy, using varying LODs for game content and levels, while utilizing newly developed features such as snap-to-grid, snap-to-position and snap-to-angle to improve user engagement during assemblage may provide deeper learning objectives for architectural precedent study.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_225
id ecaade2021_225
authors Anishchenko, Maria and Paoletti, Ingrid
year 2021
title Yarn-Level Modeling of Non-Uniform Knitted Fabric for Digital Analysis of Textile Characteristics - From a bitmap to the yarn-level model
doi https://doi.org/10.52842/conf.ecaade.2021.1.253
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 253-262
summary Modern CNC weft knitting machines are capable to produce textiles with complex non-uniform structures and shapes in a single operation with minimum human intervention. The type of knit structure and the settings of the knitting machine significantly influence the fabric characteristics and its role in architectural comfort. However, there is still no open-access tool for fast and efficient analysis of textiles with consideration of their knit structure, especially if they are knitted non-uniformly. Moreover, the existing methodologies of digital modeling of the knit structure are not linked to the actual production of textiles on flat-bed knitting machines. This paper presents a tool that "reads" a bitmap image that can be as well imported into a knitting machine software and generates a yarn-level geometry of the knitted textiles, that can be further integrated into the behavior analysis software within the rhino-grasshopper environment. This methodology helps to preview and analyze knitted textiles before production and can help to optimize the programming of bespoke knitted textiles for large-scale architectural applications.
keywords knitting; computational knitting; digital simulation; textile characteristics; textiles for architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_060
id ecaade2021_060
authors Antinozzi, Sara, Ronchi, Diego, Fiorillo, Fausta and Barba, Salvatore
year 2021
title 3Dino: Configuration for a Micro-Photogrammetric Survey - Applying Dino-Lite microscope for the digitalization of a cuneiform tablet
doi https://doi.org/10.52842/conf.ecaade.2021.2.211
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 211-222
summary Close-range photogrammetry, due to the possibilities offered by the technological evolution of acquisition tools and, above all, the relative original challenges posed to surveyors and the theory of measurements, deserve constant critical attention. The new opportunities to detect and represent reality are mostly focused on historical architecture, referring to consequent orders of magnitude and restitution scales. On the other hand, the formalization of relevant practices for very small objects is not frequently addressed. In recent tests carried out using two Dino-Lite handheld digital microscope models, polarized light digital microscopes generally used in medical and industrial fields, we proved the potential of using these imaging systems also for Cultural Heritage documentation, highlighting, however, some issues related to the depth of field and the consequent acquisition geometry. Therefore, this study aims to solve these problems, increasing the performance of microscopic photogrammetry by optimizing the acquisition procedures with the design of custom accessories for micro-photogrammetry (e.g. a calibrated plate). These developments will be carried out as part of a technology transfer agreement with the Dino-Lite company pointed to codify a protocol for high accuracy photogrammetric documentation of small artefacts.
keywords Digital Heritage; Small artefacts; Detailed 3D shape; Handheld microscope
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_085
id ecaade2021_085
authors Apolinarska, Aleksandra Anna, Kuhn, Mathias, Gramazio, Fabio and Kohler, Matthias
year 2021
title Performance-Driven Design of a Reciprocal Frame Canopy - Timber structure of the FutureTree
doi https://doi.org/10.52842/conf.ecaade.2021.1.497
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 497-504
summary This paper presents the design process of a recently built, 107 m2 free-form timber frame canopy. The structure is an irregular, funnel-shaped reciprocal frame resting on a central concrete column, and has been fabricated using a robot-based assembly process. The project addresses several known design and fabrication challenges: modelling of free-form reciprocal frames, complex interrelations between their geometry and structural behaviour, as well as develops custom software tools to represent different models and interface design and structural analysis environments. The performance-driven design is exemplified by studies on the relationship between geometric parameters of the reciprocal frame and the resulting force-flow and flexural stiffness of the structure. The final design is obtained by differentiating geometry and stiffness to reduce deflection and tensile stresses while observing fabrication constraints.The project demonstrates the application of computational design to create customized, performance-driven and robotically fabricated structures, and its successful realization validates the methods under real-life planning and construction conditions.
keywords Integrated computational design ; Performance-based design ; Reciprocal frames ; Timber structures; Robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_276654 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002