CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_085
id ecaade2021_085
authors Apolinarska, Aleksandra Anna, Kuhn, Mathias, Gramazio, Fabio and Kohler, Matthias
year 2021
title Performance-Driven Design of a Reciprocal Frame Canopy - Timber structure of the FutureTree
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 497-504
doi https://doi.org/10.52842/conf.ecaade.2021.1.497
summary This paper presents the design process of a recently built, 107 m2 free-form timber frame canopy. The structure is an irregular, funnel-shaped reciprocal frame resting on a central concrete column, and has been fabricated using a robot-based assembly process. The project addresses several known design and fabrication challenges: modelling of free-form reciprocal frames, complex interrelations between their geometry and structural behaviour, as well as develops custom software tools to represent different models and interface design and structural analysis environments. The performance-driven design is exemplified by studies on the relationship between geometric parameters of the reciprocal frame and the resulting force-flow and flexural stiffness of the structure. The final design is obtained by differentiating geometry and stiffness to reduce deflection and tensile stresses while observing fabrication constraints.The project demonstrates the application of computational design to create customized, performance-driven and robotically fabricated structures, and its successful realization validates the methods under real-life planning and construction conditions.
keywords Integrated computational design ; Performance-based design ; Reciprocal frames ; Timber structures; Robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2021_110
id caadria2021_110
authors Bao, Ding Wen, Yan, Xin, Snooks, Roland and Xie, Yi Min
year 2021
title SwarmBESO: Multi-agent and evolutionary computational design based on the principles of structural performance
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 241-250
doi https://doi.org/10.52842/conf.caadria.2021.1.241
summary This paper posits a design approach that integrates multi-agent generative algorithms and structural topology optimisation to design intricate, structurally efficient forms. The research proposes a connection between two dichotomous principles: architectural complexity and structural efficiency. Both multi-agent algorithms and Bi-directional evolutionary structural optimisation (BESO) (Huang and Xie 2010), are emerging techniques that have significant potential in the design of form and structure.This research proposes a structural behaviour feedback loop through encoding BESO structural rules within the logic of multi-agent algorithms. This hybridisation of topology optimisation and swarm intelligence, described here as SwarmBESO, is demonstrated through two simple structural models. The paper concludes by speculating on the potential of this approach for the design of intricate, complex structures and their potential realisation through additive manufacturing.
keywords Swarm Intelligence; Multi-agent; BESO (bi-directional evolutionary structural optimisation); Intricate Architectural Form; Efficient Structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_188
id ecaade2021_188
authors Teng, Teng and Sabin, Jenny
year 2021
title The Design and 4d Printing of Epithelial Cell-Inspired Programmable Surface Geometry
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 105-114
doi https://doi.org/10.52842/conf.ecaade.2021.1.105
summary As a design research project, this paper aims to provide a novel surface geometry design and fabrication strategy. As the foundation, this paper discusses and investigates the deformation mechanism and geometric features of cellular epithelial tissues, especially the generation of the newly discovered scutoid shape. Subsequently, we utilize the mechanism to design and fabricate programmable physical surface geometry that can change shape autonomously based on external stimulation. We summarize the work we have conducted thus far into two aspects: First, inspired by the deformation mechanism of epithelial cells we propose a new design strategy for generating complex surface geometry from transformable individual units; Second, we also develop a new 4d printing method, which allows the surface geometry to be programmed on demand and to emulate the generative and bio-inspired design model analogically.
keywords programmable material; 4d printing; bio-inspired design; epithelial cell; scutoid; surface design
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
doi https://doi.org/10.52842/conf.caadria.2021.1.743
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id cdrf2021_359
id cdrf2021_359
authors Ayoub Lharchi, Mette Ramsgaard Thomsen, and Martin Tamke
year 2021
title Joint Descriptive Modeling (JDM) for Assembly-Aware Timber Structure Design
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_33
summary Joints design is an essential step in the process of designing timber structures. Complex architectural topologies require thorough planning and scheduling, as it is necessary to consider numerous factors such as structural stability, fabrication capabilities, and ease of assembly. This paper introduces a novel approach to timber joints design that embed both fabrication and assembly considerations within the same model to avoid mistakes that might cause delays and further expenses. We developed a workflow that allows us to identify the fundamental data to describe a given joint geometry, machine-independent fabrication procedures, and the assembly sequence. Based on this, we introduce a comprehensive descriptive language called Joint Descriptive Model (JDM) that leverages industry standards to convert a joint into a usable output for both fabrication and assembly simulations. Finally, we suggest a seed of a joint’s library with some common joints.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_241
id ecaade2021_241
authors Bitting, Selina, Azadi, Shervin and Nourian, Pirouz
year 2021
title Reconfigurable Domes - Computational design of dry-fit blocks for modular vaulting
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 263-274
doi https://doi.org/10.52842/conf.ecaade.2021.1.263
summary In contrast to the contemporary aesthetic account, Muqarnas are geometrically complex variations of Squinches used for structural integration of rectilinear geometries and curved geometries. Inspired by the historical functionality of Muqarnas, we present a generalized computational workflow for generating dry-fit stacking modules from two-dimensional patterns in order to construct a dome. Similar to Muqarnas these blocks are modular in nature, complex in geometry, and compression-only in their structural behavior. We demonstrate the design of such structures based on the exemplary Penrose pattern and showcase the variations & potentials of this method in comparison to conventional approaches.
keywords Muqarnas; Generative Design; Modular Design; Unreinforced Masonry Architecture; Penrose Tiling; Workflow Design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia21_362
id acadia21_362
authors Bruscia, Nicholas
year 2021
title Surface Disclination Topology in Self-Reactive Shell Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 362-371.
doi https://doi.org/10.52842/conf.acadia.2021.362
summary This paper discusses recent developments on the geometric construction and fabrication techniques associated with large-scale surface disclinations. The basic concept of disclinations recognizes the role of “defects” in the composition of materials, the strategic placement of which shapes the material by inducing curvature from initially planar elements. By acknowledging the relationship between geometry and topology that governs disclination based form-finding and material prototyping, this work consciously explores its potential at the architectural scale. Basic geometric figures and their topological transformations are documented in the context of digital modeling and simulation, fabrication, and a specific material palette. Specifically, this work builds on recent efforts by focusing on three particular areas of investigation; a) enhancing the stability of surface disclinations with a synthetic fibrous layer, b) aggregation via periodic tilings, and c) harnessing snap-through buckling to increase bending stiffness in thin surfaces.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
doi https://doi.org/10.52842/conf.acadia.2021.270
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_381
id sigradi2021_381
authors El-Khouly, Tamer, Abdelmohsen, Sherif, Riad, Aya, Abdelkhalek, Joumana and Abdelgawad, Norhan
year 2021
title Heritage-inspired Interactivity: Traditional Geometric Patterns as an Inspiration for Interactive Architectural Prototypes
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 617–628
summary Coding and visual programming are becoming an important component of design education, with focus on algorithmic thinking, form finding, and generative design. Programming languages like Processing are increasingly explored within shape studies in architecture, thus opening unique possibilities for creative design exploration. Most pedagogical approaches that integrate coding in exploring heritage-inspired geometric patterns focus on shape grammars and rule-based design. This exploratory paper further examines the potential of traditional geometric patterns as inspiration sources for interactivity in architectural design. We discuss the process and outcomes of an undergraduate architectural computing course at the American University in Cairo, Egypt, where students implement visual programming using Processing to develop interactive architecture prototypes based on cultural heritage. Results demonstrated a variety of abstraction and translation strategies for both tangible and intangible heritage inspirations, and generation of emergent concepts for diverse architectural prototypes including urban grids, movable structures, and responsive façades.
keywords Generative design, programming, pattern generation, heritage, interactivity
series SIGraDi
email
last changed 2022/05/23 12:11

_id ijac202119304
id ijac202119304
authors Emami, Niloufar
year 2021
title Disregarded solution spaces: A proposed approach to draw connections between computationally generated solution spaces and actual built case studies
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 273–290
summary Many computational studies generate an array of solutions for a design problem paired with their structural or daylighting performance. An enormous investment of effort and computational time is required to create these simulation-based datasets. However, the generated data is usually bound to the specific case studies they were created to explore. Can this data be useful for application to other design cases? This study employed a generative algorithm to fill a database with perforated shell structures covering a courtyard. A shell by Heinz Isler was chosen to be mapped onto the generated solution space based on its performance. The study found that this method is effective for predicting daylight performance, while structural performance modifications can be a source of inspiration for designing other structural forms.
keywords Parametric design, generative design, performance-based design, structural performance, daylighting performance, perforated concrete shells
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_137
id caadria2021_137
authors Fattahi Tabasi, Saba, Alaghmandan, Matin and Rafizadeh, Hamid Reza
year 2021
title Simultaneous effect of form modifications and topology of the bracing system on the structural performance of timber high rise building - Introducing an innovative approach using parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 421-430
doi https://doi.org/10.52842/conf.caadria.2021.1.421
summary Topology optimization is a tool that minimizes the material consumption in a structure, while at the same time provides us design alternatives integrating architectural and structural engineering concepts. However, topology optimization is a structural engineering subject and its known methods are required professional knowledge of engineering to be used. In this article, the mutual effect of form modifications and topology of the bracing system in a 9-story timber exoskeleton high-rise building regarding the governing wind load and seismic load is examined. What differentiates this study from former ones and in fact its main purpose is introducing an innovative approach towards structural topology optimization using parametric design. In this innovative approach, the possibility of moving for each central node of bracing systems in defined ranges independently and the possibility of the existence or absence of each bracing member is provided. This parametric model will enable architects to optimize the topology of the structural elements which are part of their architectural design by themselves. The CMA-ES-algorithm-based optimization is done to minimize both total mass of structure per unit area and the horizontal displacement of the top floor. For modeling, optimizing cross-sections and structural analysis, Grasshopper and its plug-in called Karamba are utilized.
keywords Topology optimization; Form finding; Parametric design; Timber tall buildings; Exoskeleton structures
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id cdrf2021_102
id cdrf2021_102
authors Gang Mao
year 2021
title A Study of Bio-Computational Design in Terms of Enhancing Water Absorption by Method of Bionics Within the Architectural Fields
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_10
summary This essay aims to explore an architecture computational design intended to accept and absorb moisture through geometrical and material conditions, and using design strategies, help deliver this moisture upwards through capillary action to areas of cryptogamic growth including mosses and smaller ferns on the surface of architecture. The purpose of this research project is to explore the morphology of general capillary systems based on research into the principle of xylematic structures in trees, thereby creating a range of capillary designs using three types of material: plaster, 3D print plastic, and concrete. In addition, computational studies are used to examine various types of computational designs of organic structures, such as columns, driven by physical and environmental conditions such as sunshine, shade, tides and other biological processes to explore three-dimensional particle-based branching systems that define both structural and water delivery paths.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2022_373
id ecaade2022_373
authors Gatóo, Ana, Koronaki, Antiopi, Chaudary, Abhinav, Gin, Yelda, Shah, Darshil U., Wiegand, Eduardo, Hesselgren, Lars, Ainoura, Midori, Bakker, Ron and Ramage, Michael H.
year 2022
title Unfolding Timber - A future of design
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 57–66
doi https://doi.org/10.52842/conf.ecaade.2022.1.057
summary “Unfolding” is a pavilion comprised of six lightweight structures designed for the London Design Biennale 2021. “UnFolding” examines the potential for using engineered timber with digital tools to produce flexible interiors. The pavilion is folded through kerfing methods into fractal-based structures. Extensive research, testing and sample fabrication to acquire optimal flexibility of different timber members through kerf patterns was accomplished for the project.
keywords Engineered Timber, Unfolding Timber, Flexible Housing, Folding Structures, Timber Pavilion
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2021_285
id caadria2021_285
authors Gawell, Ewelina
year 2021
title Optimal design of wooden pavilion gridshell structures in the context of architectural and structural collaboration
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 473-482
doi https://doi.org/10.52842/conf.caadria.2021.1.473
summary In the article two interacting aspects of collaborative design are described: shaping of the form and the rational use of materials. Form shaping will be analyzed on the basis of pavilions. The material aspect of this paper is concerned with the use of wood in contemporary construction. The first goal is to analyze the selected technical parameters related to the use of wood in the optimal shaping of gridshell structures in architecture. The second goal is to identify new opportunities for architectural and structural engineering cooperation in the context of generative digital tools. The possibility of creating new plugins for the existing generative modeling programs to improve the quality of collaboration will also be discussed. The paper is concerned with elementary research. I was able to achieve the set goals by means of theoretical analyzes based on the known literature as well as the analysis of the created objects and the accompanying research. The background for the work is a description of the selected trends of using natural wood as load-bearing elements in contemporary architecture and case studies of the selected objects that express the idea of form and material eco-efficiency.
keywords wooden structures; structural detail; bionic models
series CAADRIA
email
last changed 2022/06/07 07:51

_id cdrf2021_201
id cdrf2021_201
authors Giulia Grassi, Bjorn Sparrman, Ingrid Paoletti, and Skylar Tibbits
year 2021
title 4D Soft Material Systems
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_19
summary This work introduces multi-material liquid printing as an enabling technology for designing programmed shape-shifting silicones. The goal of this research is to provide a readily available, scalable and customized approach at producing responsive 4D printed structures for a wide range of applications. Hence, the methodology allows customization at each step of the procedure by intervening either on the material composition and/or on the design and fabrication strategies for the production of responsive components. A significant endeavour is initiated to develop and engineer two different material systems that enable shape-shifting: silicone-ethanol composites and polyvinyl siloxane swelling rubbers. The printed samples successfully comply with the expected swelling behaviour through a variety of printed test patterns.
series cdrf
email
last changed 2022/09/29 07:53

_id ascaad2021_029
id ascaad2021_029
authors Goubran, Sherif; Carmela Cucuzzella, Mohamed Ouf
year 2021
title Eco-Nudging: Interactive Digital Design to Solicit Immediate Energy Actions in The Built Space
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 177-189
summary In the built space, building occupants, their behaviours and control actions are research areas that have gained a lot of attention. This is well justified since energy behaviours can result in differences of up to 25% in building energy consumption. Previous research recommends exploring ways to influence occupants' energy behaviour – through eco-feedback and by directly engaging occupants with building controls. Very little attention has been given to the role digital art and design can play in soliciting and changing human energy-related actions and behaviours in the built space. This paper proposes a new process that combines eco-feedback, gamification, and ecological digital art to trigger occupants to take immediate and precise control actions in the built space. We design, deploy and test this by creating an immersive human-building-interaction apparatus, which we place in a month-long exhibition. This experimental interface was informed by a novel vision for engagement-based human-building interactions deeply rooted in aesthetics, digital art and design. It also uses digital art to mediate between the occupants and energy-performance of spaces by redefining their relationship with and perception of energy – moving from metrics and quantities understanding to one that is art and emotion-based. The analysis reveals that this new type of human-engagement-based interactive building-control mechanism can add a significant layer of influence on energy-related actions – without revoking the individuals' ability to control their environment. It also highlights digital design and art's power in guiding actions and interactions with the built space.
series ASCAAD
email
last changed 2021/08/09 13:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_879531 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002