CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 77

_id caadria2021_008
id caadria2021_008
authors Chung, Minyoung and Lee, Hyunsoo
year 2021
title Using Virtual Filters to Measure how the Elderly Perceive Color
doi https://doi.org/10.52842/conf.caadria.2021.2.325
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 325-334
summary This study was conducted to test the effectiveness of a virtual filter that digitally compensates for age-related changes in color perception. Many elderly people experience declining color perception. Medical studies have been conducted on how elderly peoples lenses affect their color perception. However, digital practical method for improving elderly peoples color perception need to be developed. Subway map is a good example of many elders daily experience. To adapt virtual filters to subway maps colors, standard short-wavelength colors, namely purple and green, were selected for variance independence (VI) because colors with short wavelengths of 400-600 nm on visible light are difficult for elderly people to perceive. Standard color VIs of subway lines and VI transferred to artificial lenses were measured with a spectrophotometer. CIE LAB and RGB; Color value on virtual filter (VD) was analyzed from VI. This virtual filter was developed based on artificial lenses using Dynamo. A visual programming algorithm was developed to adjust the color of a virtual filter through an interface. The results showed that virtual filters can be used to help elderly people detect short-wavelength colors. Therefore, virtual filters should be incorporated into lenses for use by the elderly.
keywords Virtual filter; Elderly people's perception; Colors on subway map
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2021_189
id cdrf2021_189
authors Yuhan Chen, Youyu Lu, Tianyi Gu, Zhirui Bian, Likai Wang, and Ziyu Tong
year 2021
title From Separation to Incorporation - A Full-Circle Application of Computational Approaches to Performance-Based Architectural Design
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_18
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary In performance-based architectural design, most existing techniques and design approaches to assisting designers are primarily for a single design problem such as building massing, spatial layouts, or facade design. However, architectural design is a synthesis process that considers multiple design problems. Thus, for achieving an overall improvement in building performance, it is critical to incorporate computational techniques and methods into all key design problems. In this regard, this paper presents a full-circle application of different computational design approaches and tools to exploit the potential of building performance in driving architectural design towards more novel and sustainable buildings as well as to explore new research design paradigms for performance-based architectural design in real-world design scenarios. This paper takes a commercial complex building design as an example to demonstrate how building performance can be incorporated into different building design problems and reflect on the limitations of existing tools in supporting the architectural design.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_218
id ecaade2021_218
authors Krnjaic, Aleksandar and Jovanovic, Marko
year 2021
title Iris Diaphragm Mechanism Application for Daylighting Control
doi https://doi.org/10.52842/conf.ecaade.2021.1.505
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 505-514
summary Daylight is an important factor in interior design. The benefits can be seen in reduced need for heating and artificial lighting, while the caveats are visual hindrance, glare, thermal discomfort and increased energy for cooling. The industry standard way of controlling daylighting is with roller blinds, venetian blinds, curtains, static and automated façades which do not allow sufficient control over daylight. The aim of this paper is to explore the potential of using circular modules with the iris diaphragm mechanism as a system for controlling the daylight amount, similar to the approach used on Arab World Institute. Circular module that are proposed in the paper consists of an outer casing, inner rotational and stationary rings and blades. A parametric iris model is generated and optimized to conform to the criteria of having the smallest casing, thinnest blades and the least amount of blades to decrease fabrication and assembly time. The circular module is applied in three layouts on a rectangular opening to calculate the efficiency in daylighting control. Obtained results show significant increase in systems flexibility and performance compared to the closest implementation in the south façade of the Arab World Institute.
keywords iris diaphragm; daylight; shading system; daylight control
series eCAADe
email
last changed 2022/06/07 07:52

_id cdrf2021_252
id cdrf2021_252
authors Chengyu Sun, Shuyang Li , Yinshan Lin, and Weilin Hu
year 2021
title From Visual Behavior to Signage Design: A Wayfinding Experiment with Eye-Tracking in Satellite Terminal of PVG Airport
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_24
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Passengers principally rely on signage to making wayfinding decisions in transportation buildings. Most existing research focuses on the analysis of the wayfinding trajectory, but there is less attention on the process of how passengers make the wayfinding decision. So, it is hard to accurately locate the causes of the wrong wayfinding decision. Taking the Satellite Terminal of Shanghai Pudong International Airport (PVG Airport) as an example, we adopted the eye-tracking technology and recorded the eye-tracking data of passengers observing the signage and making wayfinding decisions. Then, we compared and analyzed the data, presenting it by data visualization. This study found the causes of passengers making wrong wayfinding decisions and the visual behavior of wayfinding: the reconfirmation behavior, the priority of attention, and the clockwise observation. Finally, corresponding suggestions for signage design optimization are put forward regarding some wayfinding decision points. As a result, the optimized signage system in the satellite terminal is welcomed by the passengers two months later according to monthly questionnaires.
series cdrf
last changed 2022/09/29 07:53

_id ijac202119405
id ijac202119405
authors Cohen, Zach
year 2021
title Building sympathy: Waiting-with digital fabrication machines as a form of architectural labor
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 553–567
summary Many digital fabrication machines have potential dangers, for example, sudden fires or projectile debris; thus, architects are generally required to supervise these machines when they employ them to make things. It is unlikely that further mechanization will ever completely eliminate such dangers since they result from unpredictable material processes. Therefore, as digital fabrication machines proliferate throughout architecture schools and practices, architects will find themselves spending increasingly more time supervising them, and waiting. In this paper, I argue that architects should then not only embrace waiting-with digital fabrication machines as a new form of architectural labor, but also begin to explore the ways in which such waiting can be productive. I begin with a critique of many architects’ impatience with digital fabrication processes. I then use the continental philosopher Henri Bergson’s concept of “intuition” to discuss the productive potential of waiting-with. Finally, I use a speculative 3D printing workflow to present additional creative possibilities that can arise if architects intentionally build waiting into digital fabrication processes.
keywords Theory, labor, automation, time, 3D printing, sympathy, digital fabrication
series journal
email
last changed 2024/04/17 14:29

_id ijac202119106
id ijac202119106
authors Del Campo, Matias; Alexandra Carlson, and Sandra Manninger
year 2021
title Towards Hallucinating Machines - Designing with Computational Vision
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 88–103
summary There are particular similarities in how machines learn about the nature of their environment, and how humans learn to process visual stimuli. Machine Learning (ML), more specifically Deep Neural network algorithms rely on expansive image databases and various training methods (supervised, unsupervised) to “make sense” out of the content of an image. Take for example how students of architecture learn to differentiate various architectural styles. Whether this be to differentiate between Gothic, Baroque or Modern Architecture, students are exposed to hundreds, or even thousands of images of the respective styles, while being trained by faculty to be able to differentiate between those styles. A reversal of the process, striving to produce imagery, instead of reading it and understanding its content, allows machine vision techniques to be utilized as a design methodology that profoundly interrogates aspects of agency and authorship in the presence of Artificial Intelligence in architecture design. This notion forms part of a larger conversation on the nature of human ingenuity operating within a posthuman design ecology. The inherent ability of Neural Networks to process large databases opens up the opportunity to sift through the enormous repositories of imagery generated by the architecture discipline through the ages in order to find novel and bespoke solutions to architectural problems. This article strives to demystify the romantic idea of individual artistic design choices in architecture by providing a glimpse under the hood of the inner workings of Neural Network processes, and thus the extent of their ability to inform architectural design.The approach takes cues from the language and methods employed by experts in Deep Learning such as Hallucinations, Dreaming, Style Transfer and Vision. The presented approach is the base for an in-depth exploration of its meaning as a cultural technique within the discipline. Culture in the extent of this article pertains to ideas such as the differentiation between symbolic and material cultures, in which symbols are defined as the common denominator of a specific group of people.1 The understanding and exchange of symbolic values is inherently connected to language and code, which ultimately form the ingrained texture of any form of coded environment, including the coded structure of Neural Networks.A first proof of concept project was devised by the authors in the form of the Robot Garden. What makes the Robot Garden a distinctively novel project is the motion from a purely two dimensional approach to designing with the aid of Neural Networks, to the exploration of 2D to 3D Neural Style Transfer methods in the design process.
keywords Artificial intelligence, design agency, neural networks, machine learning, machine vision
series journal
email
last changed 2021/06/03 23:29

_id caadria2021_086
id caadria2021_086
authors Eisenstadt, Viktor, Arora, Hardik, Ziegler, Christoph, Bielski, Jessica, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Exploring optimal ways to represent topological and spatial features of building designs in deep learning methods and applications for architecture
doi https://doi.org/10.52842/conf.caadria.2021.1.191
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 191-200
summary The main aim of this research is to harness deep learning techniques to support architectural design problems in early design phases, for example, to enable auto-completion of unfinished designs. For this purpose, we investigate the possibilities offered by established deep learning libraries such as TensorFlow. In this paper, we address a core challenge that arises, namely the transformation of semantic building information into a tensor format that can be processed by the libraries. Specifically, we address the representation of information about room types of a building and type of connection between the respective rooms. We develop and discuss five formats. Results of an initial evaluation based on a classification task show that all formats are suitable for training deep learning networks. However, a clear winner could be determined as well, for which a maximum value of 98% for validation accuracy could be achieved.
keywords deep learning; spatial configuration; data representation; semantic building fingerprint
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2021_150
id ascaad2021_150
authors Fathima, Linas; Chithra K
year 2021
title Shapegrammar: A Tool for Research in Traditional Architecture
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 465-478
summary Every Architectural style consists of an Architectural language with vocabulary, syntax, and semantics. The compositional principles of a particular style can be defined over as a set of rules. These rules can be reformed and converted using mathematical computational techniques using Shape Grammar (A systematic method used for interpreting spatial design and activities). Researchers across the world used shape grammar to analyse design patterns of traditional architectural styles, master architects' works, etc. These rule-based methods can be adopted into computer languages to produce new designs. Traditional Architecture of a region portrays culture integrated with all aspects of human life. The proposed paper is to study the potentials of shape grammar to use as a tool in the research of traditional architectural styles by analysing case studies. The research methodology reviews the previous shape grammar studies conducted in various conventional styles and comparative analysis of the approaches of authors in shape grammar generation. The research by Lambe and Dongre on the formulation of shape grammar of Pol houses of Ahmadabad and Cagdas's work on traditional Turkish houses is an example of this. T Knight had formulated shape grammar of Japanese tea houses, and Yousefniapasha and Teeling developed a grammar of vernacular houses facing rice fields of Mazandaran, Iran. Similarly, many researchers used shape grammars as a tool to analyse traditional architecture. So the study will compare the different traditional shape grammar generations and formulate a sample shape grammar of a traditional prototype to conclude the scope of further research in the domain.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_025
id ascaad2021_025
authors Fekry, Ahmed; Reham El Dessuki, Mai Abdalaty
year 2021
title Using ENVI-met to Simulate the Climatic Behavior of Green Elements in Urban Spaces
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 341-354
summary The urban environment is nothing but the product of the permanent interaction between the physical elements that make up the urban space and the corresponding climatic factors. This relationship is similar to a chemical reaction, hence the difficulty of anticipating and dealing with such complex relationships. As a result, designers resort to the use of simulation software. Designers in the area of urban design must be fully aware of the ways to use these programs optimally and check the impact of the use of green elements within urban spaces in advance during the design process before practical implementation. This paper aims to integrate the design of urban spaces with the simulation of climatic behavior using ENVI-met climatic simulation software. It also aims to determine the impact of using the optimal ratio of green elements in urban spaces on the thermal comfort of their users (using two example urban spaces at the American University in New Cairo and Princess Noura University in Riyadh).
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2022_197
id ecaade2022_197
authors Giglio, Andrea, Gorbet, Rob and Beesley, Philip
year 2022
title Hybrid Soundscape: Human and non-human sounds interactions for a collective installation
doi https://doi.org/10.52842/conf.ecaade.2022.1.441
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 441–447
summary The paper describes a site-specific architectural soundscape installation created during a workshop in August 2021 at the Domaine de Boisbuchet in France. Far from urban noise, participants were attuned to natural, artificial, and human sound spheres, placing them in dialog and interweaving them through emulation, voice recording, and electro-acoustic devices including piezoceramic sensors, small motors, speakers, and embedded electronics. This expository paper includes qualitative descriptions of the spatial sound compositions, the technology that supported them, and the performance into which they were integrated. The results of this event were described by participants as trance-like, with phasing of multiple periodically organized emergent sound phenomena creating a deeply immersive distributed environment. In describing in detail, the tools, processes, outcomes and implications of the workshop, this paper offers an example of a design approach and model that can contribute immersive distributed architectural soundscape design through human and non-human sound interaction.
keywords Spatial Sound, Hybrid Soundscape, Acoustic Responsive Devices, Human-Nonhuman Sound Interaction, Collective Installation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2021_135
id ecaade2021_135
authors Guterres, Filipe and Coutinho Quaresma, Filipe
year 2021
title Residential Structures for the Elderly Transformation Grammar
doi https://doi.org/10.52842/conf.ecaade.2021.2.313
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 313-322
summary The increment of the average life expectancy and the birth rate reduction in developed countries generates invariably a massive global population ageing. Assuming that residential houses are adaptable for elder citizen requirements, it will be important to provide the quality of life and social support for this fringe of population, maintenance of its use and avoiding abrupt space changes for nursing houses, for example. Our research, using a Shape Grammar from the portuguese housing legislation and mobility principles, proposes a generative tool that will allow to (re)design residential houses. Our goal is to provide designers an intuitive document that explains in a systematic way to enable architects to address norms in an intuitive way. the application of norms according to Portuguese housing legislation and referring to social equipment and technical rules related to accessibilities
keywords adaptative housing; shape grammar; generative design; Portuguese housing legislation; transformation in design.
series eCAADe
email
last changed 2022/06/07 07:50

_id cdrf2021_340
id cdrf2021_340
authors Hao Wu, Ming Lu, XinJie Zhou, and Philip F. Yuan
year 2021
title Application of 6-Dof Robot Motion Planning in Fabrication
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_31
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary . In practical robotic construction work, such as laying bricks and painting walls, obstructing objects are encountered and motion planning needs to be done to prevent collisions. This paper first introduces the background and results of existing work on motion planning and describes two of the most mainstream methods, the potential field method, and the sampling-based method. How to use the probabilistic route approach for motion planning on a 6-axis robot is presented. An example of a real bricklaying job is presented to show how to obtain point clouds and increase the speed of computation by customizing collision and ignore calculations. Several methods of smoothing paths are presented and the paths are re-detected to ensure the validity of the paths. Finally, the flow of the whole work is presented and some possible directions for future work are suggested. The significance of this paper is to confirm that a relatively fast motion planning can be achieved by an improved algorithmic process in grasshopper.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_354
id caadria2021_354
authors Huang, Chenyu, Gong, Pixin, Ding, Rui, Qu, Shuyu and Yang, Xin
year 2021
title Comprehensive analysis of the vitality of urban central activities zone based on multi-source data - Case studies of Lujiazui and other sub-districts in Shanghai CAZ
doi https://doi.org/10.52842/conf.caadria.2021.2.549
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 549-558
summary With the use of the concept Central Activities Zone in the Shanghai City Master Plan (2017-2035) to replace the traditional concept of Central Business District, core areas such as Shanghai Lujiazui will be given more connotations in the future construction and development. In the context of todays continuous urbanization and high-speed capital flow, how to identify the development status and vitality characteristics is a prerequisite for creating a high-quality Central Activities Zone. Taking Shanghai Lujiazui sub-district etc. as an example, the vitality value of weekday and weekend as well as 19 indexes including density of functional facilities and building morphology is quantified by obtaining multi-source big data. Meanwhile, the correlation between various indexes and the vitality characteristics of the Central Activities Zone are tried to summarize in this paper. Finally, a neural network regression model is built to bridge the design scheme and vitality values to realize the prediction of the vitality of the Central Activities Zone. The data analysis method proposed in this paper is versatile and efficient, and can be well integrated into the urban big data platform and the City Information Modeling, and provides reliable reference suggestions for the real-time evaluation of future urban construction.
keywords multi-source big data; Central Activities Zone; Vitality; Lujiazui
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia21_112
id acadia21_112
authors Kahraman, Ridvan; Zechmeister, Christoph; Dong, Zhetao; Oguz, Ozgur S.; Drachenberg, Kurt; Menges, Achim; Rinderspacher, Katja
year 2021
title Augmenting Design
doi https://doi.org/10.52842/conf.acadia.2021.112
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 112-121.
summary In recent years, generative machine learning methods such as variational autoencoders (VAEs) and generative adversarial networks (GANs) have opened up new avenues of exploration for architects and designers. The presented work explores how these methods can be expanded by incorporating multiple abstract criteria directly into the formulation of the algorithm that negotiates these complex criteria and proposes a fitting design. It draws inspiration from the works of several design theorists who have developed such goal-oriented approaches to design, and sets up multiple-objective VAE and GAN frameworks with this idea in mind. The research demonstrates that by incorporating multiple constraints using auxiliary discriminator networks, the developed algorithms are able to generate innovative solutions to two example problems: the design of 2D digits, and the design of 3D voxel chairs. By speculating and examining the role of the designer in data based generative computational design workflows, the research aims to provide an approach for solving design tasks in the age of big data.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_280
id acadia21_280
authors Koleva, Denitsa; Özdemir, Eda; Tsiokou, Vaia; Dierichs, Karola
year 2021
title Designing Matter
doi https://doi.org/10.52842/conf.acadia.2021.280
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 280-291.
summary Autonomously shape-changing granular materials are investigated as architectural construction materials. They allow the embedding of different mechanical behaviors in the same material system through the design of their component particles. Granular materials are defined as large numbers of individual elements of larger than a micron. Because they are not bound to each other, only the contact forces act between them. The design of individual particles affects the behavior of a granular substance composed of such materials. The design process involves the definition of the form and materiality of the particle in relation to the desired function of the granular material. If shape-change materials are deployed in the making of the particles, the granular material can have more than one designed behavior, for example, both liquid and solid phases. Autonomously shape-changing granular materials have seldom been explored in either architecture or granular physics. Thus their exploration is both a relevant and a novel contribution to the field of granular architectures in specific and computational architectural design in general.

This article outlines the field of autonomously shape-changing granular materials and embeds them in the current state. Experimental and simulation methods for the development of shape-changing particles and granular materials are introduced. A case study on the development and testing of autonomously shape-changing particles made from a bimetal is also presented. Further research is outlined with respect to the practical, methodological, and conceptual development of an autonomously shape-changing designed granular material.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_244
id ecaade2021_244
authors Kontovourkis, Odysseas and Tryfonos, George
year 2021
title A Hybrid Robotic Construction Approach in Large Scale - The example of a tree-like timber branching structure development
doi https://doi.org/10.52842/conf.ecaade.2021.2.189
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 189-198
summary This paper demonstrates an integrated approach for the development of a complex timber structure through a hybrid model of robotic and conventional construction. Specifically, a tree-like branching structure is parametrically developed and optimized in terms of material waste reduction during robotic cutting of variable structural components in size and angle. Also, the position and angle of joints are determined through robotic marking of wooden components in a continuous robotic workflow. This is followed by their conventional assembly into larger structural elements and then into an overall structure. The physical results are evaluated in terms of cutting and assembly accuracy of wooden parts based on a 3D scanning approach. The results show manufacturing deviations, both in cutting and assembly stages, which are executed by the robot and the carpenters respectively. These results provide useful inputs that enables a more thorough and productive consideration of the application of robotic technology and human involvement in the construction industry.
keywords Hybrid construction; Tree-like branching structure; Robotic cutting; Manual assembly; Accuracy
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac202119311
id ijac202119311
authors Kovacs, Adam Tamas; Micsik, Andras
year 2021
title BIM quality control based on requirement linked data
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 431–448
summary This article discusses a BIM Quality Control Ecosystem that is based on Requirement Linked Data in order to create a framework where automated BIM compliance checking methods can be widely used. The meaning of requirements is analyzed in a building project context as a basis for data flow analysis: what are the main types of requirements, how they are handled, and what sources they originate from. A literature review has been conducted to find the present development directions in quality checking, besides a market research on present, already widely used solutions. With the conclusions of these research and modern data management theory, the principles of a holistic approach have been defined for quality checking in the Architecture, Engineering and Construction (AEC) industry. A comparative analysis has been made on current BIM compliance checking solutions according to our review principles. Based on current practice and ongoing research, a state-of-the-art BIM quality control ecosystem is proposed that is open, enables automation, promotes interoperability, and leaves the data governing responsibility at the sources of the requirements. In order to facilitate the flow of requirement and quality data, we propose a model for requirements as Linked Data and provide example for quality checking using Shapes Constraint Language (SHACL). As a result, an opportunity is given for better quality and cheaper BIM design methods to be implemented in the industry.
keywords Compliance check, quality assurance, quality control, linked data, requirement, BIM
series journal
email
last changed 2024/04/17 14:29

_id ecaade2021_046
id ecaade2021_046
authors Lorenz, Wolfgang E., Faller, Arnold and Wurzer, Gabriel
year 2021
title DAttE - Detection of Attic Extensions - Workflow to analyze the potentials of roofs in an urban environment
doi https://doi.org/10.52842/conf.ecaade.2021.1.375
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 375-384
summary European cities like Vienna are characterized by strong growth and, as a result, by high demand for living space. Extending the attic is one way of meeting this demand. However, there is a lack of data to know which roofs are already expanded and to what extent. The city is interested in the data in two ways: firstly, in relation to the distribution of potentials (a possible change in population density, for example, has an impact on infrastructure and parking space) and, secondly, in relation to the material composition (city as a material resource). This paper provides a workflow to fill this gap of knowledge. The new methods of detecting attic extensions are described and a case study is given at the end to show workability.
keywords point clouds; thermal detection; drone detection; participation
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2021_014
id ecaade2021_014
authors Lu, Ming, Zhou, Xinjie, Zhou, Yifan, Zhang, Liming, Zhu, Weiran and Yuan, Philip F.
year 2021
title Research on Realtime Communication and Control Workflow with Vision Feedback Integrated in Robotic Fabrication
doi https://doi.org/10.52842/conf.ecaade.2021.2.145
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 145-152
summary On-site construction is one of the main research directions of robot construction. Due to the complex and everchanging construction environment on the site, traditional offline programming and simple conditional programming cannot meet the needs of robot on-site construction at all. Realtime adjustment of the robot's operating program for the real-time situation in the field is the appropriate solution. Therefore, the real-time communication and control of robots has become a key issue for robot on-site construction. This article discusses in turn the way of robot offline program control through EthernetKRL and grasshopper. A remote real-time communication and control method for an on-site construction robot is studied, and the application of the method in the on-site construction process of an actual robot is introduced with the Wuzhen coffee kiosk project as an example. Based on the above methods, remote real-time monitoring of the construction robot on site can be realized, which provides a reference for the actual engineering application of the construction robot on site.
keywords on-site; robot; fabrication; communication; sensor
series eCAADe
type normal paper
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_407419 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002