CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 593

_id caadria2021_081
id caadria2021_081
authors Li, Danrui, Huang, Rong and Wu, Yihao
year 2021
title Sensitivity Analysis of Pedestrian Simulation on Train station platforms
doi https://doi.org/10.52842/conf.caadria.2021.2.529
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 529-538
summary As the concerns for pedestrian safety in station design are growing, multi-agent simulation becomes more widely used nowadays. While the difference between inputs in regard to their impacts on simulation outputs needs further research, previous studies fail to provide a global analysis of it in complex environments with limited computation resources. Therefore, regression-based SRC and revised Morris Method are employed in a sensitivity analysis of train station platform simulations. Results show that preference for escalators and alighting rate are influential parameters to all three concerned outputs while the standard deviation of walking speed is negligible. Given that most simulation users have limited time and resources, this paper provides a list of parameters that deserve the time and effort to calibrate together with a factor fixing method that can be applied in similar scenarios. In this way, simulation users can lower the uncertainty of train station simulations more efficiently.
keywords Sensitivity analysis; Train station; Pedestrian; Simulation; Morris Method
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_157
id caadria2021_157
authors Huang, Xiaoran, Kimm, Geoff and Burry, Mark
year 2021
title Exploiting game development environments for responsive urban design by non-programmers - melding real-time ABM pedestrian simulation and form modelling in Unity 3D
doi https://doi.org/10.52842/conf.caadria.2021.2.689
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 689-698
summary Precinct-level pedestrian simulation often requires moderate to high-level modelling skills with a steep learning curve, and is usually non-flexible, time-consuming and exclusive of the broader public community. Confronting these problems, our research investigates a novel and agile workflow to test precinct pedestrian behaviours by melding agent-based simulation (ABM) and responsive real-time form modelling mechanisms within accessible visualisation of city and precinct environments in a game engine, Unity 3D. We designed an agent system prototype of configurable and interoperable nodes that may be placed in an urban modelling scenario. Realtime CSG, a fast polygon-based modelling plugin, is also introduced to our workflow where users can use the evidence observed when running a scenario to quickly adjust the street morphology and buildings in response. In this process, end users are kept in the design loop and may make critical adjustments, whereby a responsive, collective, informed design agenda for our built environments can inform more detailed outcomes of pedestrian behaviour and action and promote more efficient collaborations for both professionals and local communities.
keywords Agent-based pedestrian simulation; responsive modelling; computer-aided urban design; public participation
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2021_136
id caadria2021_136
authors Carallo, Marinella
year 2021
title Office building design in Hong Kong Island through shape optimization
doi https://doi.org/10.52842/conf.caadria.2021.1.441
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 441-450
summary Dealing with crucial decision-making process has led to the development of many different methods of multicriteria assessments, especially optimization methodologies. This work is mainly focused on the integration of advanced computational design and digital methods, to design a complex building shape resulting in a performance-based approach through optimization methodologies. The project consists of the design of a skyscraper in Hong Kong Island made through parametrically controlled shape and evaluated respect to light and wind to reduce Urban Heat Island phenomena and enhance liveability. The aim is to find out a unique methodology that can be applied to different cases by making small adaptations regarding the parametrization and the parameters involved. The design is divided into two stages that need to arrange the methodology at different levels throughout the workflow. For this reason, it is mandatory to adapt inputs to the algorithm according to the goal. The result is a skyscraper placed in the financial district of Hong Kong, which has both the features of a Grade A Office building and can mitigate the UHI effect thanks to its particular and optimized shape.
keywords shape optimization; Computational design; Genetic Algorithm; UHI effect; ventilation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_132
id caadria2021_132
authors Nodado, Cheska Daclag, Yogiaman, Christine and Tracy, Kenneth
year 2021
title Towards Wind-Induced Architectural Systematization - Demonstrating the Collective Behaviour of Urban Blocks as a Design Asset
doi https://doi.org/10.52842/conf.caadria.2021.2.447
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 447-456
summary This paper presents the premise of collective behaviour of singular units as a design asset in an urban environment. The collaborative effect of building shapes, surface texture and the order of buildings on wind patterns in the urban were explored and analysed. The results revealed that these three factors are imperative to effectively design airflow and air velocity to create cooling effects in warm urban environments. This study intends to solve the problem of compact building blocks which create stagnant air in outdoor urban spaces that worsens outdoor urban thermal comfort. As the study involves a large scale urban area which requires tremendous simulation time, this paper would also demonstrate an attempt for an alternative workflow in studying computational fluid dynamic (CFD) through utilizing Houdini, which is an animation software to predict wind flow patterns in an urban context in a faster way which is highly beneficial for conceptual design stage. The paper explains the setup of Houdini working interface which enables the researcher to compare simulation results of varying models with ease via the switch button, and further improve simulation speed by disabling the need of remeshing the original model.
keywords collaborative behaviour; urban blocks; wind pattern; computational fluid dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2021_150
id ecaade2021_150
authors Song, Yanan and Yuan, Philip F.
year 2021
title A Research On Building Cluster Morphology Formation Based On Wind Environmental Performance And Deep Reinforcement Learning
doi https://doi.org/10.52842/conf.ecaade.2021.1.335
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 335-344
summary Nowadays, numerous researchers emphasize the significance of the environmen-tal performance-driven generative methodology. However, due to the complex coupling mechanism of environmental regulation factors, the existing optimiza-tion engines and applications are time-consuming and cumbersome. In this re-search, we propose a novel design methodology based on Deep Reinforcement Learning (DRL). This paper is divided into 3 sections, including theoretical framework, design strategy, and practical application. It first introduces an over-view of basic principles, illustrating the potential advantages of DRL in perfor-mance data-driven design. Based on this, the paper proposes a DRL-based gener-ative method. We point out a more specific discussion about the application and workflow of core DRL elements in architectural design. Finally, taking a grid-form urban space composed by multitude high-rise building blocks as an exam-ple, we present a application through a DRL agent to conduct numerous active wind environmental performance-based design tests. It is an interactive and gen-erative design method, owning multiple advantages of timeliness, convenience, and intelligence.
keywords Deep Reinforcement Learning; Environmental Performance Design; Generative Design; Building Cluster Formation
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2021_085
id caadria2021_085
authors Förster, Nick, Bratoev, Ivan, Fellner, Jakob, Schubert, Gerhard and Petzold, Frank
year 2021
title Designing Crowd Safety - Agent-Based Pedestrian Simulations in the Early,Collaborative Design Stages
doi https://doi.org/10.52842/conf.caadria.2021.2.729
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 729-738
summary Contemporary agent-based pedestrian simulations offer great potential to evaluate architectural and urban design proposals in terms of medical risks, crowd safety, and visitor comfort. Nevertheless, due to their relative computational heaviness and complicated input-parameters, pedestrian simulations are not employed during the design process commonly. Simulation results significantly impact planning decisions, especially when they are already available in the early design phases. This paper analyzes the requirements of pedestrian simulations for early planning stages, such as seamless integration into iterative and collaborative design processes, interactivity, and appropriate visualization of results. For this purpose, we combine two existing projects: a high-accuracy pedestrian simulation and the CDP//Collaborative Design Platform. To adapt the simulation method to the requirements of early planning stages, we investigate interactions that blend intuitively with the design process and enable multiple users to interact simultaneously. We simplify simulations input parameters to match the level of detail of the early design phases. The simulation model is adapted to facilitate continuous and spontaneous interactions. Furthermore, we develop visualization techniques to support initial design negotiations and present strategies for compensating computation time and giving constant feedback to a dynamic design process.
keywords Pedestrian Simulation; Agent-Based Simulation; Early Design Stages; Collaborative Design; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2021_274
id caadria2021_274
authors Kawai, Yasuo
year 2021
title Urban Space Simulation System for Townscape Ordinance
doi https://doi.org/10.52842/conf.caadria.2021.2.479
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 479-488
summary In this study, a game engine-based urban space simulation system for townscape ordinance was developed and evaluated. For accurate evaluation of a townscape, it is important for the townscape simulation to be as close to reality as possible from various perspectives. The proposed system employs a freely moving first-person viewpoint with different height and origin variations; the building height and exterior wall color can also be changed. To evaluate the system, the simulation and photographic images were compared. The photographic images exhibited a higher gaze rate on spatial components; high gaze rates were also observed for vehicle and pedestrian in the photographic images. Therefore, we recreated dynamic spatial components such as vehicles and pedestrians. Additionally, we successfully reproduced the night townscape via a switchable light source and enabled the control of the numbers of poles and signs. The townscape reproduced by the proposed system could contribute to townscape planning. In the future, a more versatile urban space simulation system that combines various sources of urban information can be developed.
keywords Landscape Simulation; Game Engine; Urban Planning; Gaze Elements; Sequence
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_342
id caadria2021_342
authors Lau, Siu Fung George and van Ameijde, Jeroen
year 2021
title City Centres in the Era of Self-Driving Cars: Possibilities for the Redesign of Urban Streetscapes to Create Pedestrian-oriented Public Spaces
doi https://doi.org/10.52842/conf.caadria.2021.2.609
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 609-618
summary The forthcoming popularization of Self-driving Vehicles (SDVs) suggests a significant challenge in urban planning, as it enables new mobility patterns for urban citizens. While manufacturers have been developing visionary scenarios where cars become rentable mobile activity spaces, the impact of SDVs on the urban context is unclear. Through the analysis of the new social and technological functionalities developed by car manufacturers, and the projection of these functions into spatial scenarios of use within urban case study site, this paper explores the potential for the redesign of urban streetscapes to reclaim open spaces for pedestrian experiences and urban culture.
keywords High-density urbanism; Self-driving vehicles; Urban analytics
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2021_191
id caadria2021_191
authors Shou, Xinyue, Chen, Pinyang and Zheng, Hao
year 2021
title Predicting the Heat Map of Street Vendors from Pedestrian Flow through Machine Learning
doi https://doi.org/10.52842/conf.caadria.2021.2.569
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 569-578
summary Street vending is a recent policy advocated by city governments to support small and intermediate businesses in the post-pandemic period in China. Street vendors select their locations primarily based on their intuitions about the surrounding environment; they temporarily occupy popular locations that benefit their business. Taking the city of Chengdu as an example, this study aims to formulate the rules governing vendors location selection using machine learning and big data analysis techniques, thus identifying streets likely to become vital street markets. We propose a semantic segmentation method to construct heat maps that visualize and quantify the distribution of street vendors and pedestrians on public urban streets. The image-based generative adversarial network (GAN) is then trained to predict the vendors heat maps from the pedestrians heat map, finding the relationship between the locations of the vendors and the pedestrians. Our successful prediction of the vendors locations highlights machine learning techniques ability to quantify experience-based decision strategies. Moreover, suggesting potential marketing locations to vendors could help increase cities vitality.
keywords Machine Learning; Big Data Analysis; Semantic Segmentation; Generative Adversarial Networks
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_173
id caadria2021_173
authors Xu, Wenzhao, Huang, Xiaoran and Kimm, Geoff
year 2021
title Tear Down the Fences: Developing ABM Informed Design Strategies for Ungating Closed Residential Communities - Developing ABM informed design strategies for ungating closed residential communities
doi https://doi.org/10.52842/conf.caadria.2021.2.467
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 467-477
summary Embedded in Chinas urbanization process, the growth of gated residential estates has gradually induced severance of urban spaces, resulting in an underutilization of public amenities, a lack of walkable permeability, and congestion of traffic. Responding to these negative effects on urban development, the CPC has released a guideline in February 2016 to prohibit the development of any new closed residential areas in principle and to advocate ungated communities. In this paper, we utilized ABM simulation analysis to test different degrees of openness, the position of new entrances/openness, and pedestrian network typologies, aiming to explore feasible strategies to accommodate the new urban design agenda. A series of typical gated compounds in Beijing were selected for comparative case studies, conducted under different degrees of openness of each case and under diverse ungating modes between cases. On the basis of these analyses, we summarized a sequence of pedestrian-centric design strategies, seeking to increase the communities permeability and walkability by suggesting alternative internal and external road network design options for Beijing urban renewal. By integrating quantified simulation into the empirical method of urban design, our research can positively assist and inform urban practitioners to propose a more sustainable urbanity in the future.
keywords Gated community; agent-based modeling; pedestrian simulation; computer-aided urban design; road network optimization
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_056
id caadria2021_056
authors Yang, Chunxia, Xu, Chen, Lyu, Chengzhe and Zhan, Ming
year 2021
title Differences between Behavior Simulation and Space Syntax in the Study of Urban Texture - Considering the Street System and Property Right Plots
doi https://doi.org/10.52842/conf.caadria.2021.2.367
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 367-376
summary The study applies two methods of behavioral simulation and space syntax to study waterfront accessibility from the urban texture levels of street system and property plot, exploring two methods differences, advantages and disadvantages in terms of simulation principle, fitting precision, and calculating results. The North Bund area of Shanghai is selected as the research sample. And the software of AnyLogic and Depthmap which are mostly used in the fields of behavior simulation and space syntax are used. The results are:Behavior simulation can visually reflect the usage condition of specific spaces through micro behavior data such as pedestrian flow, walking time, etc. But it has limitation in precision and stability of calculation, and the model need much time to construct and run if the site is large. Space syntax is more mature in accessibility analysis with high precise indexes such as choice and integration degree. However, the fitting precision between the output and real situation is lower than behavior simulation, and it cant directly evaluate the capacity and service level of the urban space. In general, both behavior simulation and space syntax can be applied to urban space research and have their own advantages and disadvantages, and complementary in between.
keywords behavior simulation; space syntax; method comparison; urban texture; waterfront
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2021_70
id sigradi2021_70
authors Kabošová, Lenka, Chronis, Angelos, Galanos, Theodore and Katunský, Dušan
year 2021
title Leveraging Urban Configurations for Achieving Wind Comfort in Cities
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 79–90
summary Given the continuous improvements in digital design and analysis tools, designing in line with the environmental conditions can be much more seamlessly integrated into the conceptual design stage. That leads to faster, informed design decisions and, if incorporated into day-to-day practice, to a sustainable built environment. The presented design method, focusing on enhancing the outdoor wind comfort through architecture, leverages wind analysis tools, such as newly-developed InFraRed, verified by other Grasshopper plug-ins, in the urban design process. As shown in the case study, iterating through various design options and evaluating their impact on the wind flow is faster yet precise, leading towards picking the best-performing design alternative in terms of outdoor wind comfort.
keywords real-time wind predictions, wind comfort, parametric design, CFD analysis, machine learning
series SIGraDi
email
last changed 2022/05/23 12:10

_id caadria2021_404
id caadria2021_404
authors Kim, Jong Bum, Aman, Jayedi and Balakrishnan, Bimal
year 2021
title Forecasting performance of Smart Growth development with parametric BIM-based microclimate simulations
doi https://doi.org/10.52842/conf.caadria.2021.1.411
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 411-420
summary Smart Growth is a fast-growing urban design and planning movement developed by the United States Environmental Protection Agency (EPA). These regulations control urban morphologies such as building form, position, façade configurations, building materials, road configurations, which have an explicit association with the microclimate and outdoor comfort. This paper presents an urban modeling and simulation framework that can represent the urban morphology and its impact on microclimate shaped by Smart Growth. First, we created urban models using custom parametric objects and a building component library in BIM. Then we integrated parametric BIM and multiple performance simulations, including wind analysis, solar accessibility, and energy use. For implementation, a case study was carried out using two Smart Growth regulations in the Kansas City metropolitan area. The paper elaborates on the findings from simulation results, challenges in implementation, and limitations of the proposed framework to manage a large number of regulation variables in simulation.
keywords Smart Growth Regulations; Building Information Modeling (BIM); Parametric Simulation; Microclimate Simulation; Computational Fluid Dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_029
id ecaade2021_029
authors Shen, Yuhui, Wang, Likai, Zhang, Ran, Tong, Ziyu and Ji, Guohua
year 2021
title EvoMass + GH_Wind - An agile wind-driven building massing design optimization framework
doi https://doi.org/10.52842/conf.ecaade.2021.1.477
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 477-486
summary The complex interactive relationship between wind flow and building design poses a great challenge in architectural design. Recent research has been conducted to combine Computational Fluid Dynamics (CFD) and computational design optimization to solve the problem. However, due to the time-consuming simulation process and the assertion-oriented computational optimization application, such CFD-based design optimization frameworks are not easy to integrate with architects' early-stage design exploration. To address these issues, this paper proposes an agile wind-driven building massing design optimization framework incorporating EvoMass and GH_Wind in the Rhino-Grasshopper environment. EvoMass is an integrated evolutionary building massing design tool, and GH_Wind is a simulation tool embedded with a Fast Fluid Dynamics (FFD) solver. Combining these two tools allows for fast wind-driven design optimization, thereby enabling architects to apply it to early-stage design exploration. To demonstrate its efficacy, a case study is presented to illustrate how the proposed design optimization framework can provide architects with useful design information and, thereby, facilitate more performance-informed design for early-stage architectural design.
keywords building massing design; performance-based design; design exploration; wind-driven design; Fast Fluid Dynamics; design optimization
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2021_074
id caadria2021_074
authors Song, Yanan, Li, Keke, Lin, Yuqiong and Yuan, Philip F.
year 2021
title Research on Self-Formation Wind Tunnel Platform Design based on dynamic gridding mechanical devices
doi https://doi.org/10.52842/conf.caadria.2021.2.669
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 669-678
summary Nowadays, climate problems, such as urban ventilation, heat island effect are becoming increasingly serious. Performance-oriented buildings that respond positively to the environment are constructing a sustainable future of the living environment. This research introduces an autonomous Self-Formation Wind Tunnel (SFWT) platform based on 120 dynamic grid mechanical devices, and its building cluster morphology generation workflow in the conceptual design stage, for the rapid and mass formation experiments. The Self-formation wind tunnel plat-form, which has the advantages of both perceptive and real-time data, is able to use the techniques of machine learning to provide a new design paradigm, from environmental performance to physical morphology.
keywords Self-Formation Wind Tunnel; Building Cluster Morphology; Dynamic Models; Mechanical Grid Devices; Environment Performance Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_064
id caadria2021_064
authors Yang, Chunxia, Liu, Mengxuan, Zhan, Ming, Lyu, Chengzhe and Fan, Zhaoxiang
year 2021
title Research on the Influence of Microclimate on Recreation Behavior in Urban Waterfront Public Space - Based on Multi-agent Behavior Simulation
doi https://doi.org/10.52842/conf.caadria.2021.2.417
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 417-426
summary Microclimate is one of the important components of the city environment. Previous researches on public space focused on the influence of spatial forms on user behavior, while ignoring the microclimate elements. This makes it difficult to be authentic of further recreational behavior simulation. The study puts forward a new path to study the influence of microclimate on recreational behavior. Taking the waterfront public space as an example, through the combination of field investigation and microclimate simulation, the influence of wind, temperature, and sunshine environment on residents recreational is explored, and the influence will be merged into the recreational behavior simulation. In the process of behavior simulation, the microclimate environment classification evaluation map is used. The study committed to achieve a higher degree of adaption between behavior simulation results and actual conditions. The study introduced microclimate influence factors on the basis of the influence of urban spatial form and service facility elements on behavior activities in the past. Based on that, we optimize the simulation method of urban public space recreational behavior, and improve the accuracy of space diagnosis through showing the impact of microclimate on the behavior of people in the space more objectively and intuitively.
keywords Behavior simulation; Microclimate; Waterfront public space
series CAADRIA
email
last changed 2022/06/07 07:57

_id cdrf2021_139
id cdrf2021_139
authors Shicong Cao1 and Hao Zheng
year 2021
title A POI-Based Machine Learning Method for Predicting Residents’ Health Status
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_13
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Health environment is a key factor in public health. Since people’s health depends largely on their lifestyle, the built environment which supports a healthy living style is becoming more important. With the right urban planning decisions, it’s possible to encourage healthier living and save healthcare expenditures for the society. However, there is not yet a quantitative relationship established between urban planning decisions and the health status of the residents. With the abundance of data and computing resources, this research aims to explore this relationship with a machine learning method. The data source is from both the OpenStreetMap and American Center for Decease Control and Prevention (CDC). By modeling the Point of Interest data and the geographic distribution of health-related outcome, the research explores the key factors in urban planning that could influence the health status of the residents quantitatively. It informs how to create a built environment that supports health and opens up possibilities for other data-driven methods in this field.
series cdrf
email
last changed 2022/09/29 07:53

_id ascaad2021_153
id ascaad2021_153
authors Valitabar, Mahdi; Mohammadjavad Mahdavinejad, Henry Skates, Peiman Pilechiha
year 2021
title Data-Driven Design of Adaptive Façades: View, Glare, Daylighting and Energy Efficiency
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 699-711
summary This paper attempts to increase occupants’ view to outside through Adaptive facades by employing a parametric design method. Reaching a balance between occupants’ requirements and the building energy criteria is the main objective of this research. To this end, a multi-objective optimization is done to generate some optimum models. The method, indeed, was used to optimize the shading size of a dynamic vertical shading system utilized on the south façade of a single office room located in Tehran. The shading system was defined by five parameters and a combination of Cut-off and a glare protection strategy is used to control dynamic shadings. The size-optimisation objectives are minimum DGP, cooling load and maximum illuminance, which were analysed by Ladybug Tools. Then, Octopus was used for multi-objective optimistion to find new optimum forms. Along with the openness factor, a new index is presented to evaluate the outside view in multiple louver shading systems, named “Openness Curvature Factor” (OCF). Thanks to this method, the size and shape of some optimum generated models were modified to increase the amount of OCF. Following that the Honeybee Plus is used to simulate the visual performance of modified models which shows a significant improvement. The modified models could provide about 4 times more outside view than generated models whilst keeping the DGP value in imperceptible range. Geometric or even complex non-geometric shading forms can be studied by this method to find optimum adaptive facades.
series ASCAAD
email
last changed 2021/08/09 13:14

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_234
id sigradi2021_234
authors Al Nouri, Mhd Ziwar, Baghdadi, Bilal and Khateeb, Nairooz
year 2021
title Re-coding Post-War Syria: The Role of Data Collection & Objective Investigations in PostWar Smart City
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 127–145
summary Re-coding post-war Syria is an ongoing research and data platform, focused on innovation and collecting comprehensive, infrastructural and socioeconomic analytics, synchronization data, by using AI driven to give a more transparent image of innovating a new methodology to regenerate the future of post-war smart cities into advanced and sustainable urban environments in a smarter way (Fig. 1). The pressure to achieve a rapid Post-war smart city without clear strategy and comprehensive analysis of all aspects will cause a particularly catastrophic collapse in the interconnected social structure, services, education and health care system, leaving a long-term impact on the society. This paper presents the current status of the Research & Documentation methodology in the Data Collection phase by the objective investigations conducted through a series of local and international workshops species developed in this research called “Re-Coding“, offering consequent direct ground surveys, statistics and documentation study of the targeted areas, merging professionalism and youth power with local community to detect an open source data used as a tool to re-generate a precarious area towards a new methodology.
keywords Post-War Smart cities, Collecting Data, Local community, Objective Investigations, Artificial intelligence
series SIGraDi
email
last changed 2022/05/23 12:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_38566 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002