CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 609

_id caadria2021_233
id caadria2021_233
authors Ascoli, Raphaël
year 2021
title Augmenting computational design agency in emerging economies
doi https://doi.org/10.52842/conf.caadria.2021.2.639
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 639-648
summary This /practice-based design research/ investigates the possibility of computational design to increase agency and impact in emerging economies through real-world projects. By cultivating a new kind of relationship to issues in development and local untapped resources, they inspire for more public engagement and resource-based conversations within a spatial framework. The topics that were addressed in this research are the democratization of data and affordability of construction. These two on-going early-stage initiatives have used computational design tools at specific areas in the projects development, therefore optimizing the parts where low-tech tools werent sufficient. This demand driven design process explores ways in which different levels of technology can augment each other.
keywords space; resource; housing; myanmar; optimization
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_502
id acadia21_502
authors Mytcul, Anna
year 2021
title ARchitect
doi https://doi.org/10.52842/conf.acadia.2021.502
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 502-511.
summary This research investigates gaming as a framework for design democratization in architecture, where the end user is the key decisionmaker in the design process. ARchitect is a multisensory game that promotes and explores the educational aspects of learning games and their influence on end user engagement with house co-design. This combinatorial game relies on an augmented reality (AR) application accessible through a smartphone, serving as a low-threshold tool for converting architectural drawings into 3D models in real time and using AR technology for design evaluation.

By allowing for learning through playing, ARchitect provides alternative ways of gaining knowledge about design and architecture and empowers non-experts to take active and informed positions in shaping their future urban environments on a micro-scale, rethinking conventional market relations and exploring emerging personal and public values. The ARchitect game challenges conventional participatory design where an architect plays an essential role in facilitation of the design process and translation of end users’ design proposals. In contrast, the proposed game system allows non-architect players to autonomously produce and access design solutions through embedded computational simulation by an AR application, thus giving an equal chance to non-professionals to express their design visions and become aware of potential implications of their ideas. By providing free access to the game contents through the ARchitect platform and a playful user experience by which design principles can be learned, this game will inspire the general public to engage in conversation about home design, eventually spreading architectural literacy to less-privileged communities.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2023_476
id sigradi2023_476
authors Ena, Valeria and Ferreira Magalhaes, Alex
year 2023
title Ruling the Urban Block: a Discussion over Rio de Janeiro's New Master Plan Proposal Parameters.
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 373–384
summary The paper aims to analyse the parameters for dimensioning the urban block in the context of the ongoing debate over Rio de Janeiro's new Master Plan (PLC N°44/2021). The analysis focuses on three main points: (1) the definition of the block, (2) the discrepancies found in this regard in the land parcelling system, and (3) the limitations that gated communities impose on the parameterisation of the block. The paper briefly relates the role of the master plan in Brazilian urban policy. Next, it points out the arguments that emerged during the public hearings over the new proposed master plan regarding block sizing. Then, it analyses Rio's urban law framework and the literature regarding the city's road network, cul-de-sac structures and gated communities, supported by the blocks and the streets georeferenced maps available at the Rio's Municipality and the Open Street Maps platform. Finally, it discusses the analysis outcomes with the arguments that emerged during the public hearings regarding block sizing.
keywords Parametric Design, City parameters, Gated communities, Cul-de-sac, Street continuity
series SIGraDi
email
last changed 2024/03/08 14:07

_id ascaad2021_065
id ascaad2021_065
authors Fraschini, Matteo; Julian Raxworthy
year 2021
title Territories Made by Measure: The Parametric as a Way of Teaching Urban Design Theory
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 494-506
summary Design tools like Grasshopper are often used to either generate novel forms, to automate certain design processes or to incorporate scientific factors. However, any Grasshopper definition has certain assumptions about design and space built into it from its earliest genesis, when the initial algorithm is set out. Correspondingly, implicit theoretical positions are built into definitions, and therefore its results. Approaching parametric design as a question of architectural, landscape architectural or urban design theory allows the breaking down of traditional boundaries between the technical and the historical or theoretical, and the way parametric design, and urban design history & theory, can be conveyed in the teaching environment. Once the boundaries between software and history & theory are transgressed, Grasshopper can be a way of testing the principles embedded in historical designs and thus these two disciplines can be joined. In urban design, there is an inherent clash between an ideal model and existing urban geography or morphology, and also between formal (qualitative) and numerical (quantitative) aspects. If a model provides a necessary vision for future development, an existing topography then results from the continuous human and natural modifications of a territory. To explore this hypothesis, the “Urban Design Representation” subject in the Master of Urban Design program at the University of Cape Town taught in 2017 & 2018 was approached “parametrically” from these two opposite, albeit convergent, starting points: the conceptual/rational versus the physical/empiric representations of a territory. In this framework, Grasshopper was used to represent typical standards and parameters of modern urban planning (for example, Floor/Area Ratio, height and distance between buildings, site coverage, etc), and a typological approach was adopted to study and “decode” the relationship between public and private space, between the street, the block and topography, between solids and voids. This methodology permits a cross-comparison of different urban design models and the immediate evaluation of their formal outputs derived from parametric data.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia21_212
id acadia21_212
authors Gillespie, David; Qin, Zehao; Aish, Francis
year 2021
title An Extended Reality Collaborative Design System
doi https://doi.org/10.52842/conf.acadia.2021.212
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 212-221.
summary This paper presents a new system that enables an eXtended Reality (XR) collaborative design review process, by augmenting an existing physical mockup or environment with virtual models at 1:1 scale in-situ. By using this new hybrid approach, existing context can be extended with minimal or no base physical structure through a simulated VR/AR environment to facilitate stakeholder design collaboration in a manner that was previously either cost prohibitive or technically unfeasible. Through combining real and virtual in this way, the sense of realism can be enhanced, increasing engagement and participation in the design process. An approach to apply AR/VR to uncontrolled environments is described, allowing it to overcome challenges such as tracking and mapping, and allowing users to walk around freely in-situ.

Two examples are presented where the system has been used in live project environments, one as a design tool for client review and engagement, and the other as part of a public planning process.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202119305
id ijac202119305
authors Hosseini, Seyed Vahab; Alim, Usman R.; Oehlberg, Lora; Taron, Joshua M.
year 2021
title Optically illusive architecture (OIA): Introduction and evaluation using virtual reality
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 291–314
summary Architects and designers communicate their ideas within a range of representational methods. No single instance of these methods, either in the form of orthographic projections or perspectival representation, can address all questions regarding the design, but as a whole, they demonstrate a comprehensive range of information about the building or object they intend to represent. This explicates an inevitable degree of deficiency in representation, regardless of its type. In addition, perspective-based optical illusions manipulate our spatial perception by deliberately misrepresenting the reality. In this regard, they are not new concepts to architectural representation. As a consequence, Optically Illusive Architecture (OIA) is proposed, not as a solution to fill the gap between the representing and represented spaces, but as a design paradigm whose concept derives from and accounts for this gap. By OIA we aim to cast light to an undeniable role of viewpoints in designing architectural spaces. The idea is to establish a methodology in a way that the deficiency of current representational techniques—manifested as specific thread of optical illusions—flourishes into thoughtful results embodied as actual architectural spaces. Within our design paradigm, we define a framework to be able to effectively analyze its precedents, generate new space, and evaluate their efficiencies. Moreover, the framework raises a hierarchical set of questions to differentiate OIA from a visual gimmick. Furthermore, we study two OIA-driven environments, by conducting empirical studies using Virtual Reality (VR). These studies bear essential information, in terms of design performance, and the public’s ability to engage and interact with an OIA space, prior to the actual fabrication of the structures.
keywords Architectural representation, optical illusion, design evaluation, virtual reality
series journal
email
last changed 2024/04/17 14:29

_id acadia21_92
id acadia21_92
authors Imai, Nate; Conway, Matthew
year 2021
title Data Waltz
doi https://doi.org/10.52842/conf.acadia.2021.092
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 92-99.
summary This paper explores the impacts of the Internet of Things (IoT) on the field of interactive architecture and the ways this novel technology enables realignments toward inclusive and critical practices in the design of computational systems across different scales. Specifically, it examines how the integration of IoT in the design of architectural surfaces can encourage interaction between local and remote users and increase accessibility amongst contributors. Beginning with a survey of media facades and the superimposition of architectural surfaces with projected images, the paper outlines a historical relationship between buildings and the public realm through advancements in technology.

The paper next reveals ways in which IoT can transform the field of interactive architecture through the documentation and analysis of a project that stages an encounter between local and remote Wikipedia contributors. The installation creates a feedback loop for engaging Wikipedia in real-time, allowing visitors to follow and produce content from their interactions with the gallery’s physical environment. Light, sound, and fabric contextualize the direction and volume of real-time user-generated event data in relation to the gallery’s location, creating an interface that allows participants to dance with dynamic bodies of knowledge.

By incorporating IoT with the field of interactive architecture, this project creates a framework for designing computational systems responsive to multiple scales and expanding our understanding of computational publics.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_204
id acadia21_204
authors Marcus, Adam
year 2021
title Arbor: Tectonic Contingencies and Ecological Engagement
doi https://doi.org/10.52842/conf.acadia.2021.204
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 204-209.
summary Arbor is a data spatialization of the urban forest of Palo Alto, California. The sculptural installation consists of 120 ribs arranged radially within King Plaza fronting Palo Alto City Hall. It uses the database of over 45,000 public trees in the city’s Open Data Portal (City of Palo Alto, n.d.) as the basis for a collective, three-dimensional map of one aspect of the city’s ecology. The installation performs like a compass, with each rib corresponding directionally to a respective “pie slice” of territory raiding outwards from City Hall. The trees are represented by bumps on the outer edge of each rib, so the zones with more trees result in ribs with more relief. The ribs are arranged in a circle, gradually changing in height, profile, and color to create a dynamic form that is different from each side
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ijac202119402
id ijac202119402
authors Noel, Vernelle AA; Boeva, Yana; Dortdivanlioglu, Hayri
year 2021
title The question of access: Toward an equitable future of computational design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 496–511
summary Digital fabrication and its cultivated spaces promise to break disciplinary boundaries and enable access to its technologies and computation for the broader public. This paper examines the trope of “access” in digital fabrication, design, and craft, and illustrates how it unfolds in these spaces and practices. An equitable future is one that builds on and creates space for multiple bodies, knowledges, and skills; allows perceptual interaction and corporeal engagement with people, materials, and tools; and employs technologies accessible to broad groups of society. By conducting comparative and transnational ethnographic studies at digital fabrication and crafting sites, and performing craft-centered computational design studies, we offer a critical description of what access looks like in an equitable future that includes digital fabrication. The study highlights the need to examine universal conceptions and study how they are operationalized in broader narratives and design pedagogy traditions.
keywords Access, knowledges, craft, digital fabrication, computation, equity, pedagogy
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_312
id caadria2021_312
authors Silcock, David, Schnabel, Marc Aurel, Moleta, Tane and Brown, Andre
year 2021
title Participatory AR - A Parametric Design Instrument
doi https://doi.org/10.52842/conf.caadria.2021.2.295
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 295-304
summary CAAD research has frequently investigated the realm of public participation in large scale urban design re-development. Yet, the recurring problem lies with the lay-person often not being able to read 2d and 3d graphic information effectively, and hence be able to participate in the process of design development proactively. To date, much-existing research focuses on developing designs for urban settings using contemporary interaction devices such as the /Hololens/; such devices, with custom interfaces, require a significant level of expertise, or an experienced guide, to help navigate or create within these environments. Our paper presents a novel alternative based on real-time-virtual-engines, XR, and a parametric back-end system. The paper discusses the advantages that the resulting tangible user interface (TUI) can play in the lay-persons engagement in the design process. In the paper, we describe how the integration of interaction design (IxD) and augmented reality (AR) offer new opportunities due to the increasing availability of barrier-free technologies that can better include lay-persons as active participants in the design development process.
keywords Augmented Reality (AR / XR); Participatory Design; Urban Design; Tangible User Interface (TUI); Parametric
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2021_116
id ascaad2021_116
authors Hannouch, Adam
year 2021
title A Human-Centred Framework for Sonic Mapping: Developing Representation Methods to Analyze Sonic Environments
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 592-601
summary This paper contributes to a new way of bringing the human physically into the in-situ environment and utilizing mapping methods of the actual sonic experience, which current acoustic studies and other environmental studies are lacking in their reliance on graphical representations. An entire era has been dominated by a visual communication of the sonic environment, yet sonic studies are not primarily dependant on visual experience. The paper reviews the possibilities of current methods of representation of the sonic experience. Representation, being crucial in the layperson’s perceptive awareness of key features of the environment can benefit from increased levels of listening methods. This includes mapping the qualities of information that reveal the environment.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_115
id caadria2021_115
authors Chen, Qin Chuan, Lakshmi Narasimhan, Vaishnavi and Lee, Hyunsoo
year 2021
title The potential of IoT-based smart environment in reaction to COVID-19 pandemic
doi https://doi.org/10.52842/conf.caadria.2021.2.709
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 709-718
summary COVID-19 was first reported in late December 2019 and quickly become a global health crisis. In the COVID-19 pandemic context, the dense and open characteristics make the public spaces a potential virus transmission hotspot. Therefore, it is extremely critical to adopt a more advanced and effective method in public environments to slow down its spread until a vaccine is widely used. A smart environment in the form of IoT, also known as the architecture of IoT, consists of three layers: perception layer, network layer, and application layer. A smart environment allows data and activities that happen in this environment to be collected, processed, and shared in real-time through various sensors. It can be introduced for early detection, tracking, and monitoring of potential confirmed cases. The smart environment is considered one of the most promising approaches to face and tackle the current scenario. However, research focusing on the potential of IoT smart environment in reaction to COVID-19 is still meager. Therefore, this paper identifies the smart environments potential based on the concept of IoT architectures three layers and further discusses how IoT can be introduced in public spaces to help battle the pandemic.
keywords Internet of Things; Smart environment; COVID-19
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_53
id sigradi2021_53
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin and Wang, Xiangming
year 2021
title Interactive Virtual Sand Table: An Improved Alternative Participatory Design Tool for Architectural Design
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 67–78
summary With the planning reform in China, public participation is becoming increasingly crucial to the success of rural planning. However, it is difficult to involve various stakeholders in planning and design projects, mainly due to insufficient planning knowledge and computer skills. Therefore, this paper introduces the Interactive Virtual Sand Table (IVST) as a participatory design tool so that non-professional users can use it conveniently and promote interactive and efficient collaborative design discussion. The IVST based participatory tool was applied in Xidong Village, Chaozhou City, Guangdong Province, China. The results show that IVST interaction is more natural and reduces non-professional users' difficulty participating in the design. Participants' ability to participate was highly enhanced, and their interest in IVST visualization was highly activated. In conclusion, the Interactive Virtual Sand Table highly supports the participatory village planning process and may apply to other areas and domains.
keywords Mixed reality, Participatory design, Architectural design, Interactive Virtual Sand Table
series SIGraDi
email
last changed 2022/05/23 12:10

_id caadria2021_266
id caadria2021_266
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin, Du, Ruijie and Hu, Xinchuang
year 2021
title Interactive Virtual Sand Table - A theoretical review on its application towards Urban Planning
doi https://doi.org/10.52842/conf.caadria.2021.2.629
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 629-638
summary The sand table is a tool of expression of urban planning.With the development of computer science and technology,virtual reality technology is playing an important role in many aspects of urban planning and design,as well as,the virtual sand table.This article analyzes the limitations of the current urban planning sand table from designers and other participants perspectives. It analyses the advantages of applying interactive technology in a sand table for urban planning and proposes using such interactive technology in the future. This paper will also investigate three aspects of interactions: human-computer interaction technology, collaborative interaction technology, remote visual interaction technology. The application of interactive technology on the virtual sand table, on the one hand, can carry out a multi-angle forward-looking analysis of the problems of urban construction and improve the efficiency of planning and approval, and development; on the other hand, it can increase public participation in urban planning and design.
keywords interactive technology; urban planning; urban planning sand table; electronic sand table
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_240
id ecaade2021_240
authors Dan, Yuze, Shen, Zhenjiang, Lin, Yumin, Zhu, Yiyun and Xiao, Jianqiang
year 2021
title The Development of Design Support System for Public Participation of Community Public Space Design Using Mixed Reality
doi https://doi.org/10.52842/conf.ecaade.2021.1.205
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 205-212
summary Public participation has been continuously encouraged in community planning and design. However, lacking effective participatory tools, the professional design documents are complicated for the public to understand, let alone express their design intentions. The advancement of computer graphics brings possibilities to suppress this barrier, especially for the emergence of Mixed Reality (MR). In this research, we used MR technology to develop a design support tool for public participation. We implemented this system successfully by creating interactive interfaces, developing design functions, implementing design data, and establishing interactive visualizations. To examine its effectiveness, we did a participatory design experiment. We invited twelve participants to view the 3D design proposal and then make adjustments based on their respective preferences using the MR design support system. This experiment demonstrated that this system could achieve intuitive on-site 3D visualization for the public to understand professional design proposals and real-time design interactions to present their design intentions.
keywords Public participation; Design support system; Mixed Reality; Interactive visualization; Community design
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2021_263
id sigradi2021_263
authors de Oliveira, Lucas, Poeta Mangrich, Camila, Pavan, Luís Henrique, Almeida, Renato and Kós, José
year 2021
title University Campus Walkability Index Supported by Digital Databases
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 303–314
summary Studies on the university campus commonly consider its spatial particularities in comparison to the city. However, the university debate about mobility also addresses urban-related challenges, like those posed by the dependence on vehicles and incentives for active mobility. Considering internal mobility, this work explores Wi-Fi connections from a Brazilian public university to trace community trajectories and population density on campus. We adopted objective data from the built environment for the application of a walkability index. The procedures were performed using GIS and the results shared for visualization in the Kepler.gl application. The results include walkability indices for different campus sectors. The discussion focuses on the potential use of the index in promoting a more integrated and less automobile-dependent campus.
keywords visualizaçao de dados, ciencia de dados, wi-fi, campus universitário, desenho urbano
series SIGraDi
email
last changed 2022/05/23 12:10

_id sigradi2021_203
id sigradi2021_203
authors Diniz, Maria Luisa, Silva, Alan Felipe, Wedekin, Gabriela, Castro, Rafaela and Duarte, Rovenir
year 2021
title Affective Cartographies for Smarter Cities
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1295–1306
summary This paper focuses on the study of affective and digital cartographies and on relating them systematically with their design applications. The research is based on the Design Science Research strategy, through the following logical structure: (1) Problem identification; (2) Communication; (3) Definition of the objective of the solution; (4) Artifact design, development and implementation; (5) Demonstration and Evaluation. The results presented correspond to phases (1), (2) and structuring of (3). The categorization was based on the principles: (a) dynamism (dynamic vs. static), (b) responsiveness (immediate vs. non-immediate), (c) implementation domain (hard vs. soft), and (d) affective aspect (quantitative vs. qualitative). This was synthesized in a chart, which was submitted to the analysis of a group of 4 experts from a public urban planning entity, and possible applications of affective cartographies in urban projects were obtained. Those were confronted with reality from the overlapping of the problems listed with the synthesis chart, positioning such cartographies as to their vocations.
keywords cartografias digitais, afeto, Deleuze, senseable cities, Smart City
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2021_062
id ascaad2021_062
authors Elgobashi, Aya; Yasmeen El Semary
year 2021
title Redefinition of Heritage Public Spaces Using PPGIS: The Case of Religious Complex in Old Cairo
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 355-370
summary Plenty of challenges all over the world are affecting the urban development of spaces in the cities, especially those of heritage sites; these urban spaces provide various ambiances that appeal to the senses. Although surrounded open spaces in heritage sites are full of rich, deep knowledge that plays an active role in the community perceptions, it has been recently neglected. A contribution is paid to the combination of digital technologies to help in preserving those spaces. Its integrated use could exponentially increase the effectiveness of conservation strategies of ancient buildings. GIS technology became a usual documentation tool for heritage managers, conservators, restorers, architects, archaeologists, painters, and all other categories of experts involved in cultural heritage activities. Consequently, the GIS has faced strong criticism as it is a tool for documentation without engaging in the public environment and the users’ needs; as a result, GIS cannot help in any enhancing process as it does not have any idea about the needs of the users. This paper analyses public uses efficiency in heritage public spaces in Cairene context using public participation geographic information system (PPGIS) methodology, as it gives attention to the term “user” to include the “public” incorporating the concept of “public participation” commonly used in planning. An online survey was set up, based on Google Maps, where respondents were asked to place and rate twenty-five items on an interactive map done by (ARCGIS 10.4). These items were based on the criteria of placemaking to make those spaces full of creative ambiance to be more attractive and useful to the communities. Finally, 200 valid surveys have been collected and mapped 1500 opinions have been mapped. The Results of this research show that PPGIS is an effective tool in measuring the efficiency of those heritage public spaces, which may be valuable for future planning.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_224
id sigradi2021_224
authors Fernandes Vieira da Ponte, Luísa, Verçosa Vieira, Milena, Weber, Virna and Ribeiro Cardoso, Daniel
year 2021
title COVID-19 and the City: Mapping and Critical Analysis of the Virus Propagation in Fortaleza-CE
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 941–953
summary Social indicators are fundamental tools for measuring social facts, and their use has the potential to facilitate broad access to information. In 2020, the World experienced the beginning of the Coronavirus pandemic, which impacted the socio-spatial reality of cities around the world in several aspects and deepened social inequalities. As part of a coping Covid-19 project by ArqPET, the Somar Platform, this paper presents a mapping process of the spread of Covid-19 in Fortaleza during the four months after its arrival. The mapping, which aims to inform public policies and provides documents that support the demand for adequate housing and sanitary infrastructure in the neglected spaces of the city, relates the spread of the virus to social indicators and uses database technology to optimize its productions.
keywords Covid-19, GIS, análise de dados, assentamentos precários
series SIGraDi
email
last changed 2022/05/23 12:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_825439 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002