CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 124

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2021_37
id sigradi2021_37
authors Bevilacqua, Flavio
year 2021
title Augmented Reality and cardboard models: new possibilities for the design of interior spaces and furniture based on the link between analog and digital
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 501–510
summary The purpose of this experience consisted of linking two methodologies usually used exclusively in the study of the design operation in the university academic environment: working with cardboard models and augmented reality. The methodology used consisted of work in groups based on skills to build cardboard models, to model in 3D, and to work with augmented reality. They developed interior space designs through the interaction of physical models (made of cardboard) and observed models on those physical models through systems equipped with applications to view augmented reality. Among the main results of this experience are the possibility of interacting with dynamic objects modeled in 3D in the physical field of the cardboard model, and the successful integration of two work methodologies (analog and digital), at least in one of the stages of the design operation.
keywords REALIDAD AUMENTADA. OPERACIÓN DE DISEnO. DISEnO DE INTERIORES. MAQUETAS.
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2021_058
id ascaad2021_058
authors ElGewely, Maha; Wafaa Nadim, Mostafa Talaat, Ahmad El Kassed,Mohamed Yehia, Slim Abdennadher
year 2021
title Immersive VR Environment for Construction Detailing Education: BIM Approach
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 114-128
summary According to literature in education, adults learn best when learning is active, self-directed, problem-based, and relevant to their needs. In Building Construction Education, construction site visits provide students with real-life practical experience which are considered an extension for classroom. Nevertheless, it is challenging to integrate construction site visits regularly during the academic semester with respect to the class specific needs. Virtual Reality as an interactive immersive technology may facilitate virtual construction site that meets the learning needs where students can explore and build in a real scale environment. The proposed VR environment is an HMD VR platform for construction detailing that provides experiential learning in a zero-risk environment. It builds on integrating VR technology as a medium and Building Information Modeling (BIM) as a repository of information. This work discusses the proposed environment curricular unit prototype design, implementation, and validation. System usability and immersion are assessed both qualitatively and quantitatively. After considering the feedback, The VR environment prototype is then validated on the level of learning outcomes, providing the evidence that it would enhance students’ engagement, motivation and achievement accordingly.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_224
id sigradi2021_224
authors Fernandes Vieira da Ponte, Luísa, Verçosa Vieira, Milena, Weber, Virna and Ribeiro Cardoso, Daniel
year 2021
title COVID-19 and the City: Mapping and Critical Analysis of the Virus Propagation in Fortaleza-CE
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 941–953
summary Social indicators are fundamental tools for measuring social facts, and their use has the potential to facilitate broad access to information. In 2020, the World experienced the beginning of the Coronavirus pandemic, which impacted the socio-spatial reality of cities around the world in several aspects and deepened social inequalities. As part of a coping Covid-19 project by ArqPET, the Somar Platform, this paper presents a mapping process of the spread of Covid-19 in Fortaleza during the four months after its arrival. The mapping, which aims to inform public policies and provides documents that support the demand for adequate housing and sanitary infrastructure in the neglected spaces of the city, relates the spread of the virus to social indicators and uses database technology to optimize its productions.
keywords Covid-19, GIS, análise de dados, assentamentos precários
series SIGraDi
email
last changed 2022/05/23 12:11

_id ijac202119205
id ijac202119205
authors Fukuda, Tomohiro; Marcos Novak, Hiroyuki Fujii, Yoann Pencreach
year 2021
title Virtual reality rendering methods for training deep learning, analysing landscapes, and preventing virtual reality sickness
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 190–207
summary Virtual reality (VR) has been proposed for various purposes such as design studies, presentation, simulation and communication in the field of computer-aided architectural design. This paper explores new roles for VR; in particular, we propose rendering methods that consist of post-processing rendering, segmentation rendering and shadow-casting rendering for more-versatile approaches in the use of data. We focus on the creation of a dataset of annotated images, composed of paired foreground-background and semantic-relevant images, in addition to traditional immersive rendering for training deep learning neural networks and analysing landscapes. We also develop a camera velocity rendering method using a customised segmentation rendering technique that calculates the linear and angular velocities of the virtual camera within the VR space at each frame and overlays a colour on the screen according to the velocity value. Using this velocity information, developers of VR applications can improve the animation path within the VR space and prevent VR sickness. We successfully applied the developed methods to urban design and a design project for a building complex. In conclusion, the proposed method was evaluated to be both feasible and effective.
keywords Virtual reality, rendering, shader, deep learning, landscape analytics, virtual reality sickness, Fourth Industrial Revolution, computer-aided architectural design
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_274
id caadria2021_274
authors Kawai, Yasuo
year 2021
title Urban Space Simulation System for Townscape Ordinance
doi https://doi.org/10.52842/conf.caadria.2021.2.479
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 479-488
summary In this study, a game engine-based urban space simulation system for townscape ordinance was developed and evaluated. For accurate evaluation of a townscape, it is important for the townscape simulation to be as close to reality as possible from various perspectives. The proposed system employs a freely moving first-person viewpoint with different height and origin variations; the building height and exterior wall color can also be changed. To evaluate the system, the simulation and photographic images were compared. The photographic images exhibited a higher gaze rate on spatial components; high gaze rates were also observed for vehicle and pedestrian in the photographic images. Therefore, we recreated dynamic spatial components such as vehicles and pedestrians. Additionally, we successfully reproduced the night townscape via a switchable light source and enabled the control of the numbers of poles and signs. The townscape reproduced by the proposed system could contribute to townscape planning. In the future, a more versatile urban space simulation system that combines various sources of urban information can be developed.
keywords Landscape Simulation; Game Engine; Urban Planning; Gaze Elements; Sequence
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_037
id ecaade2021_037
authors Kikuchi, Takuya, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Automatic Diminished Reality-Based Virtual Demolition Method using Semantic Segmentation and Generative Adversarial Network for Landscape Assessment
doi https://doi.org/10.52842/conf.ecaade.2021.2.529
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 529-538
summary In redevelopment projects in mature cities, it is important to visualize the future landscape. Diminished reality (DR) based methods have been proposed to represent the future landscape after the structures are removed. However, two issues remain to be addressed in previous studies. (1) the user needs to prepare 3D models of the structure to be removed and the background structure to be rendered after removal as preprocessing, and (2) the user needs to specify the structure to be removed in advance. In this study, we propose a DR method that detects the objects to be removed using semantic segmentation and completes the removal area using generative adversarial networks. With this method, virtual removal can be performed without preparing 3D models in advance and without specifying the removal target in advance. A prototype system was used for verification, and it was confirmed that the method can represent the future landscape after removal and can run at an average speed of about 8.75 fps.
keywords landscape visualization; virtual demolition; diminished reality (DR); deep learning; generative adversarial network (GAN); semantic segmentation
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia21_152
id acadia21_152
authors Kwon, Hyojin; Sherman, Adam
year 2021
title Crooked Captures
doi https://doi.org/10.52842/conf.acadia.2021.152
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 152-157.
summary With flashy renderings dominating news feeds and high-flying drones filming from otherwise inaccessible vantage points, our encounters with the built environment increasingly involve perspectival views, but not necessarily those experienced firsthand. As tools for image production and consumption evolve, so too will methods for studying historical precedents.

Crooked Captures treats this proliferation of digital images as fertile ground for photogrammetric explorations into how two-dimensional imaging techniques can influence three-dimensional form. While photogrammetry, the process of determining spatial measurements of physical objects from photographic inputs, has been an area of investigation for almost two centuries, the technique’s potential has blossomed with increased access to high quality cameras. Typical photogrammetric applications couple high-fidelity scanning and computing to produce faithful digital copies of physical artifacts and scenes for measuring and surveying. Leading photogrammetry software packages promise accuracy and precision, touting the exact replication of physical forms in digital space—so-called reality capture—as an indisputable virtue.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2021_319
id ecaade2021_319
authors Mesa, Olga and O'Keefe, John
year 2021
title Modeling Inter-dimensional Narratives
doi https://doi.org/10.52842/conf.ecaade.2021.2.565
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 565-574
summary The integration of VR in the creative process has caused a profound shift in the use of modeling tools and abstraction. How do instantaneous experiential feedback, body awareness, the triggering of spatial sensations, and traveling in real-time from an object-scale to a habitable-scale affect modeling in VR? This research explores the tensions and exchanges between the physical and the digital relative to spatial perception when designing in VR. The work produced by participants involved in a digital design workshop developed around these topics will be presented. In response to a written provocation, participants modeled three-dimensional dreamscapes in VR using Oculus Medium. Participants explored the connection between the body and its movements to measure, model, and control phenomena when animating virtual scenes. This research contributes to the teaching and implementation of modeling in a virtual environment by exploring the inherent possibilities of VR in relation to the conceptualization of spaces.
keywords Virtual Reality; Spatial Perception; Virtual Reality Modeling; Virtual Reality in Architecture
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia21_246
id acadia21_246
authors Safley, Nick
year 2021
title Reconnecting...
doi https://doi.org/10.52842/conf.acadia.2021.246
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 246-255.
summary This design research reimagines the architectural detail in a postdigital framework and proposes digital methods to work upon discrete tectonics. Drawing upon Marco Frascari's writing The Tell-the-Tale Detail, the study aims to reimagine tectonic thinking for focused attention after the digital turn. Today, computational tools are powerful enough to perform operations more similar to physical tools than in the earlier digital era. These tools create a "digital materiality," where architects can manipulate digital information in parallel and overlapping ways to physical corollaries. (Abrons and Fure, 2018) To date, work in this area has focused on materiality specifically. This project reinterprets tectonics using texture map editing and point cloud information, particularly reconceptualizing jointing using images. Smartphone-based 3D digital scanning was used to captured details from a series of Carlo Scarpa's influential works, isolating these details from their physical sites and focusing attention upon individual tectonic moments. As digital scans, these details problematize the rhetoric of smoothness and seamlessness prevalent in digital architecture as they are discretely construed loci yet composed of digital meshes. (Jones 2014) Once removed from their contexts, reconnecting the digital scans into compositions of "compound details" necessitated a series of new mechanisms for constructing and construing not native to the material world. Using Photoshop editing of texture-mapped images, digital texturing of meshes, and interpretation of the initial material constructions, new joints within and between these the digital scanned details were created to reframe the original detail for the post-digital.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
doi https://doi.org/10.52842/conf.caadria.2021.1.051
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_238
id acadia21_238
authors Anifowose, Hassan; Yan, Wei; Dixit, Manish
year 2021
title BIM LOD + Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2021.238
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 238-245.
summary Architectural Education faces limitations due to its tactile approach to learning in classrooms with only 2-D and 3-D tools. At a higher level, virtual reality provides a potential for delivering more information to individuals undergoing design learning. This paper investigates a hypothesis establishing grounds towards a new research in Building Information Modeling (BIM) and Virtual Reality (VR). The hypothesis is projected to determine best practices for content creation and tactile object virtual interaction, which potentially can improve learning in architectural & construction education with a less costly approach and ease of access to well-known buildings. We explored this hypothesis in a step-by-step game design demonstration in VR, by showcasing the exploration of the Farnsworth House and reproducing assemblage of the same with different game levels of difficulty which correspond with varying BIM levels of development (LODs). The game design prototype equally provides an entry way and learning style for users with or without a formal architectural or construction education seeking to understand design tectonics within diverse or cross-disciplinary study cases. This paper shows that developing geometric abstract concepts of design pedagogy, using varying LODs for game content and levels, while utilizing newly developed features such as snap-to-grid, snap-to-position and snap-to-angle to improve user engagement during assemblage may provide deeper learning objectives for architectural precedent study.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_060
id ecaade2021_060
authors Antinozzi, Sara, Ronchi, Diego, Fiorillo, Fausta and Barba, Salvatore
year 2021
title 3Dino: Configuration for a Micro-Photogrammetric Survey - Applying Dino-Lite microscope for the digitalization of a cuneiform tablet
doi https://doi.org/10.52842/conf.ecaade.2021.2.211
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 211-222
summary Close-range photogrammetry, due to the possibilities offered by the technological evolution of acquisition tools and, above all, the relative original challenges posed to surveyors and the theory of measurements, deserve constant critical attention. The new opportunities to detect and represent reality are mostly focused on historical architecture, referring to consequent orders of magnitude and restitution scales. On the other hand, the formalization of relevant practices for very small objects is not frequently addressed. In recent tests carried out using two Dino-Lite handheld digital microscope models, polarized light digital microscopes generally used in medical and industrial fields, we proved the potential of using these imaging systems also for Cultural Heritage documentation, highlighting, however, some issues related to the depth of field and the consequent acquisition geometry. Therefore, this study aims to solve these problems, increasing the performance of microscopic photogrammetry by optimizing the acquisition procedures with the design of custom accessories for micro-photogrammetry (e.g. a calibrated plate). These developments will be carried out as part of a technology transfer agreement with the Dino-Lite company pointed to codify a protocol for high accuracy photogrammetric documentation of small artefacts.
keywords Digital Heritage; Small artefacts; Detailed 3D shape; Handheld microscope
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2021_375
id sigradi2021_375
authors Banda, Pablo and Valenzuela-Astudillo, Eduardo
year 2021
title Immersive Variations: Connecting Architectural Sensitivity with Parametric Design through Collaborative Virtual Reality Environments
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1017–1028
summary Undergraduate design studies for digital fabrication and non-standard architecture are complex as their participants are usually far from systems thinking and have a basic level of confidence in the use of advanced digital tools. Furthermore, in the face of high formal complexity, the understanding of the structural system and its effects for the inhabitant are not evident. This work presents an implementation of Virtual Reality to introduce Latin American architecture university students to digital fabrication and parametric design, taking as its main premise that during the initial design stage, the designed architecture using virtual reality techniques and spatial perception can engage students to appreciate the value in these new designs, formulating new arguments and paradigms to further contribute to their training as contemporary professionals.
keywords irtual Reality, Digital fabrication, Architecture, Spatial Perception
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_447
id caadria2021_447
authors Belek Fialho Teixeira, Muge, Pham, Kieu, Caldwell, Glenda, Seevinck, Jennifer, Swann, Levi, Rittenbruch, Markus, Kelly, Nick, Santo, Yasuhiro, Garcia-Hansen, Veronica and Voltz, Kirsty
year 2021
title A User-Centred Focus on Augmented Reality and Virtual Reality in AEC: Opportunities and Barriers Identified by Industry Professionals - OPPORTUNITIES AND BARRIERS IDENTIFIED BY INDUSTRY PROFESSIONALS
doi https://doi.org/10.52842/conf.caadria.2021.2.273
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 273-283
summary This paper presents insights into the opportunities and barriers for using augmented reality (AR) and virtual reality (VR) in the architecture, engineering and construction (AEC) industry by contextualising how their adoption is leveraged in practices. Based on a review of literature, a qualitative study using semi-structured interviews was conducted with thirteen participants from AEC industries between five and thirty years of experience. Interviews were conducted face-to-face and virtually using questions focusing on participants experiences, perceptions of, and opinions about the use of AR/VR in AEC practice. Qualitative dissemination of key insights highlighted immediate and future possibilities for AR/VR, with current limitations that require future investigation from a user-centred perspective. Suggesting a XR-PACT framework, this paper frames key directions for future research to address current limitations and explore new opportunities that positively impact architecture and other professions, communities of building users.
keywords Augmented Reality; Virtual Reality; AEC; User Experience; Technology Adoption
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2021_359
id sigradi2021_359
authors Carrasco-Walburg, Carolina, Valenzuela-Astudillo, Eduardo, Maino-Ansaldo, Sandro, Correa-Díaz, Matías and Zapata-Torres, Diego
year 2021
title Experiential Teaching-learning Tools: Critical Study of Representational Media and Immersion in Architecture
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 475–488
summary The use of Virtual Reality (VR) in teaching-learning process of design, theory and history of architecture has increased in terms of virtual tours. A preliminary study of techniques and capabilities of Immersive Virtual Reality (IVR) systems allowed us to establish that the immersive and interactive virtual experience facilitates the perception and enhancement of spatial qualities. In addition, it facilitates analysis since it promotes observation and the development of spatial thinking. However, the use of this medium as a tool for analysis is less frequent. Therefore, in this research we comparatively evaluate the impact that VR has on such a task. We developed an analysis instrument using experiential learning cycles that was tested with students in control and experimental groups. As a result, we found that the experience of inhabiting facilitates integration of fundamental concepts, allowing empirical evaluation of architecture and streamlining communication in the classroom as an active learning strategy.
keywords Virtual Reality, Architecture, Spatial Perception, Experiential Learning, Teaching-Learning Process
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_251
id ecaade2021_251
authors Carvalho, Joao, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title Ceramic AM Gantry Structures - Discretisation and connections between beams and columns
doi https://doi.org/10.52842/conf.ecaade.2021.2.483
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 483-492
summary The manufacture of architectural components driven by digital design tools and Additive Manufacturing (AM) allows the achievement of highly evolved constructive systems, more integrated into a specific reality to which it is intended to respond, resulting in unique and adapted solutions with high geometric and material performances. Considering the application of these methods to common structural elements, namely beams and columns, for which there are already several examples demonstrating their feasibility, we find that it is necessary to provide a sound answer to an element that is fundamental for these proposals to function together as a single system - the moment of connection between beams and columns. In this sense, this paper proposes the design and test of a set of connections with adapted geometry between beams and columns, produced through ceramic Liquid Deposition Modelling (LDM), applying logics of topological optimization. This work foresees the development of a constructive system that incorporates reversible and irreversible connections, being formalised in a set of gantry structures formed by two vertical elements and a horizontal one, giving the comparative model between digital design and manufacture methods and the traditional ones.
keywords Ceramic AM; Performative design; Computational design; Connections; Ceramic gantry structure
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac202119204
id ijac202119204
authors Castelo-Branco, Renata; Catarina Brás, António Menezes Leitao
year 2021
title Inside the Matrix: Immersive Live Coding for Architectural Design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 174–189
summary Algorithmic Design (AD) uses computer programs to describe architectural models. These models are visual by nature and, thus, greatly benefit from immersive visualization. To allow architects to benefit from the advantages of Virtual Reality (VR) within an AD workflow, we propose a new design approach: Live Coding in Virtual Reality (LCVR). LCVR means that the architect programs the design while immersed in it, receiving immediate feedback on the changes applied to the program. In this paper, we discuss the benefits and impacts of such an approach, as well as the most pressing implementation issues, namely the projection of the programming environment onto VR, and the input mechanisms to change the program or parts of it. For each, we offer a critical analysis and comparison of the various solutions available in the context of two different programming paradigms: visual and textual.
keywords Virtual Reality, Algorithmic Design, Live Coding, Programming Environments, Interaction Mechanisms
series journal
email
last changed 2024/04/17 14:29

_id sigradi2021_346
id sigradi2021_346
authors Chagas, Icaro and Braida, Frederico
year 2021
title The Possibilities of Digital Collage as a Representation Language in Contemporary Architecture and Urbanism
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 547–557
summary This article approaches the theme of digital collage as a technique of graphic representation in Architecture and Urbanism emerging in cyberculture. The main objective is to highlight the underlying logic of digital collage as a representation language of contemporary architecture and urbanism projects. From a methodological point of view, this article is the result of qualitative, exploratory and descriptive research. In addition to the literature review on collage as an artistic and architectural expression, and its incorporation into digital culture, a study of multiple cases was carried out, taking as empirical object the graphic production of ten architecture and urbanism offices from different parts of the world. Finally, it appears that digital collages are consistent with the hybrid contemporary reality and create new poetics capable of representing the semantic and communicative dimension of architecture and urbanism design.
keywords colagem digital, representaçao gráfica, arquitetura e urbanismo
series SIGraDi
email
last changed 2022/05/23 12:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5show page 6HOMELOGIN (you are user _anon_83208 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002