CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 601

_id caadria2021_157
id caadria2021_157
authors Huang, Xiaoran, Kimm, Geoff and Burry, Mark
year 2021
title Exploiting game development environments for responsive urban design by non-programmers - melding real-time ABM pedestrian simulation and form modelling in Unity 3D
doi https://doi.org/10.52842/conf.caadria.2021.2.689
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 689-698
summary Precinct-level pedestrian simulation often requires moderate to high-level modelling skills with a steep learning curve, and is usually non-flexible, time-consuming and exclusive of the broader public community. Confronting these problems, our research investigates a novel and agile workflow to test precinct pedestrian behaviours by melding agent-based simulation (ABM) and responsive real-time form modelling mechanisms within accessible visualisation of city and precinct environments in a game engine, Unity 3D. We designed an agent system prototype of configurable and interoperable nodes that may be placed in an urban modelling scenario. Realtime CSG, a fast polygon-based modelling plugin, is also introduced to our workflow where users can use the evidence observed when running a scenario to quickly adjust the street morphology and buildings in response. In this process, end users are kept in the design loop and may make critical adjustments, whereby a responsive, collective, informed design agenda for our built environments can inform more detailed outcomes of pedestrian behaviour and action and promote more efficient collaborations for both professionals and local communities.
keywords Agent-based pedestrian simulation; responsive modelling; computer-aided urban design; public participation
series CAADRIA
email
last changed 2022/06/07 07:49

_id cdrf2021_359
id cdrf2021_359
authors Ayoub Lharchi, Mette Ramsgaard Thomsen, and Martin Tamke
year 2021
title Joint Descriptive Modeling (JDM) for Assembly-Aware Timber Structure Design
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_33
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Joints design is an essential step in the process of designing timber structures. Complex architectural topologies require thorough planning and scheduling, as it is necessary to consider numerous factors such as structural stability, fabrication capabilities, and ease of assembly. This paper introduces a novel approach to timber joints design that embed both fabrication and assembly considerations within the same model to avoid mistakes that might cause delays and further expenses. We developed a workflow that allows us to identify the fundamental data to describe a given joint geometry, machine-independent fabrication procedures, and the assembly sequence. Based on this, we introduce a comprehensive descriptive language called Joint Descriptive Model (JDM) that leverages industry standards to convert a joint into a usable output for both fabrication and assembly simulations. Finally, we suggest a seed of a joint’s library with some common joints.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_122
id ascaad2021_122
authors Georgiou, Michail; Odysseas Georgiou, Pavlos Fereos, Eftihis Efthimiou
year 2021
title X-Max | A Digitally Fabricated, Component-Based, Scrap Metal Assembly
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 536-549
summary The paper presents the outcome, titled X-MAX, of an educational, intensive 2-week workshop that focused in digitally fabricated, 3D component-based, non-Euclidean geometries using sheet metal forming. Related case studies are analyzed, compared, and grouped to identify the position and contribution of the research in the field. Early design proposals are compared and evaluated based on the hypothesis that improvements in material efficiency and construction/fabrication logistics can contribute towards more affordable design solutions. The fittest solution is further developed and optimized for construction, resulting in a full-scale prototype demonstrating expedited assembly times and decrease in manual labor with parallel savings in material resources. A purposely built design workflow is supported by a comprehensive computational model, enabling information input and output and control via various design parameters. The methodologies of registering scrap sheet metal for fabrication and simulating material bending behavior implementing K-factors are presented and discussed as novel and integral parts of the above workflow.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ijac202119407
id ijac202119407
authors Haeusler, Matthias H.; Gardner, Nicole; Yu, Daniel K.; Oh, Claire; Huang, Blair
year 2021
title (Computationally) designing out waste: Developing a computational design workflow for minimising construction and demolition waste in early-stage architectural design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 594–611
summary In the architecture, engineering and construction (AEC) industry, waste is oft framed as an economic problemtypically addressed in a building’s construction and demolition phase. Yet, architectural design decision-making can significantly determine construction waste outcomes. Following the logic of zero waste, thisresearch addresses waste minimisation‘at the source’. By resituating the problem of construction wastewithin the architectural design process, the research explores waste as a data and informational problem in adesign system. Accordingly, this article outlines the creation of an integrated computational design decisionsupport waste tool that employs a novel data structure combining HTML-scraped material data and historicbuilding information modelling (BIM) data to generate waste evaluations in a browser-based 3D modellingplatform. Designing an accessible construction waste tool for use by architects and designers aims to heightenawareness of the waste implications of design decisions towards challenging the systems of consumption andproduction that generate construction and demolition waste.
keywords Construction and demolition waste, waste minimisation, zero waste, BIM databases, design process, designmanagement, web scraping, computational design, software product development
series journal
email
last changed 2024/04/17 14:29

_id ascaad2021_112
id ascaad2021_112
authors Hassab, Ahmed; Sherif Abdelmohsen, Mohamed Abdallah
year 2021
title Generative Design Methodology for Double Curved Surfaces using AI
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 622-635
summary Despite recent approaches to generate unique surfaces using generative design algorithms, there are still challenges including teaching machines how to learn and manipulate surfaces, thus generating novel and unique versions, and exploring possible alternatives in producing unique surfaces using artificial intelligence. This paper proposes a generative design approach using Al. We propose a generative design methodology for producing novel and unique surfaces by faking input surfaces using artificial intelligence networks. This workflow is applied to two different artificial networks: (1) CycleGAN, (2) Pix2Pix and Augmentor. This experimentation is introduced to apply two real surfaces generating two fake surfaces as a unique version through the networks. Upon running the CycleGANs, Pix2Pix, and a Grasshopper script, the experiment results demonstrated how the proposed generative design methodology using AI produced a unique surface version with a higher level of manipulation and result control.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_114
id ascaad2021_114
authors Houda, Maryam
year 2021
title Materiality: Linking a Digital Material Framework with the Anthropological Hand
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 568-580
summary While computers and digital technology have evolved over the years and are changing the way we design and construct, some have criticized the way in which human tactility and intuition with material has diminished at the cost of increasing productivity and efficiency. Although the digital culture that architecture is engaged with today has brought about complex forms that could not have been possible by hand, there is a rising question of the place of craft and a hand-brain coordination in design, and the notion of learning through making. This paper explores the benefits and limitations of digital design tools in light of physically exploring building materials and gaining tactile intuition. While digital tools investigate structural optimisation methods using a parametric design workflow, physical experiments deal with understanding the transitional state of mud and its dynamic properties. This research is interested in how information is learnt from materiality during the physical act of making and what tactile experimentation can offer that the digital space cannot. Three key areas are explored: geometry and parametric variation, material properties and morphogenic behavior, as well as structural optimization methods using density grids. Force-matter relations are investigated through exploring material parameters through digital and physical form-finding processes as a way of exploring the notion of re-introducing the hand and craft in the design process which may bring about novel ways of thinking and doing.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_196
id caadria2021_196
authors Lu, Yueheng, Tian, Runjia, Li, Ao, Wang, Xiaoshi and Jose Luis, Garcia del Castillo Lopez
year 2021
title CubiGraph5K - Organizational Graph Generation for Structured Architectural Floor Plan Dataset
doi https://doi.org/10.52842/conf.caadria.2021.1.081
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 81-90
summary In this paper, a novel synthetic workflow is presented for procedural generation of room relation graphs of floor plans from structured architectural datasets. Different from classical floor plan generation models, which are based on strong heuristics or low-level pixel operations, our method relies on parsing vectorized floor plans to generate their intended organizational graph for further graph-based deep learning. This research work presents the schema for the organizational graphs, describes the generation algorithms, and analyzes its time/space complexity. As a demonstration, a new dataset called CubiGraph5K is presented. This dataset is a collection of graph representations generated by the proposed algorithms, using the floor plans in the popular CubiCasa5K dataset as inputs. The aim of this contribution is to provide a matching dataset that could be used to train neural networks on enhanced floor plan parsing, analysis and generation in future research.
keywords Graph Theory; Algorithm; Architecture Design Dataset; Organizational Graph
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2021_333
id caadria2021_333
authors Ma, Chun Yu, Chan, Yan Yu Jennifer and Crolla, Kristof
year 2021
title Expanding Bending-Active Bamboo Gridshell Structures' Design Solution Space Through Hybrid Assembly Systems
doi https://doi.org/10.52842/conf.caadria.2021.1.331
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 331-340
summary This paper discusses the development and testing of a novel design method for the low-tech construction of bending-active bamboo gridshell structures. It expands this typologys current design solution space by combining and building up on two common production methods for light-weight shell structures: 1) the lay-up method, typically used in bamboo architecture in which members are added one at a time, and 2) the flatbed method, in which a prefabricated equidistant flat grid without shear rigidity is propped up and deformed into its final doubly curved shape. The novel methodology expands the systems design solution space by incorporating singularities within the grid topology and by layering multiple separate grids. This allows for spatially radically different building geometries without loss of implementation workflow efficiency. A demonstrator design project, tested through a large-scale prototype model, is described to illustrate the possible spatially engaging architectural design opportunities presented by the novel approach.
keywords Bending-active structures; Bamboo architecture; Shell structures; Low-tech fabrication; Form finding
series CAADRIA
email
last changed 2022/06/07 07:59

_id cdrf2021_179
id cdrf2021_179
authors Mirjam Konrad, Dana Saez, and Martin Trautz
year 2021
title Integration of Algorithm-Based Optimization into the Design Process of Industrial Buildings: A Case Study
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_17
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Algorithm-based optimization is widely applied in many fields like industrial production, resulting in state-of-the-art workflows in the production process optimization. This project takes the cultural lag of conventional industrial architecture design as a motivation to investigate the implementation of algorithmbased optimization into traditional design processes. We argue that an enhanced way of architectural decision-making is possible. Current approaches use a translation of the whole design problem into a single, overly complicated optimization system. Contrary to that, this paper presents a novel workflow that defines precise design steps and applies optimizations only if suitable. Furthermore, this method can generate relevant results for factory planning design problems with contradicting factors, making it a promising approach for the complex challenges of i.e. resource-efficient building.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_341
id caadria2021_341
authors Nejur, Andrei and Szentesi-Nejur, Szende
year 2021
title The F8LD mask - Parametrized on-body design for personal protection.
doi https://doi.org/10.52842/conf.caadria.2021.1.503
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 503-512
summary The present research introduces a novel parametric approach for the construction of PPE, a face mask inspired from takeaway food packaging and kirigami techniques. The technique requires only foldable planar material with no gluing or binding. The design is customizable to the users face using an augmented reality application and automatic processing in the Grasshopper environment. Using the proposed workflow, a personal mask can be constructed from a cutting and folding pattern printed on any household 2d printer. This makes it one of the most affordable and fast techniques for artisanal PPE existent now.
keywords folding; ar; mask; parametric; on-body design
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2021_035
id ecaade2021_035
authors Newton, David
year 2021
title Visualizing Deep Learning Models for Urban Health Analysis
doi https://doi.org/10.52842/conf.ecaade.2021.1.527
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 527-536
summary As humanity has become increasingly urbanized, physical and mental health problems have increased significantly among urban populations with a combined cost of treating these diseases estimated to be in the trillions of dollars. In parallel to these developments, a growing body of research suggests that the design of the built environment has significant correlations with both physical and mental health outcomes. This research, however, has been limited in its ability to make use of large remote sensing datasets to identify specific design features at the neighborhood scale that correlate with health outcomes. The development of methods that can efficiently find such correlations from ubiquitous remote sensing datasets, such as satellite images, would therefore allow researchers a greater level of insight into how specific urban planning and design features might relate to health. This research contributes knowledge on a novel mixed method workflow to address this issue.
keywords Deep Learning; Urban Planning; Health; Artificial Intelligence; Remote Sensing
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2021_290
id ecaade2021_290
authors Nicholas, Paul, Chen, Yu, Borpujari, Nihit, Bartov, Nitsan and Refsgaard, Andreas
year 2021
title A Chained Machine Learning Approach to Motivate Retro-Cladding of Residential Buildings
doi https://doi.org/10.52842/conf.ecaade.2021.1.055
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 55-64
summary This paper investigates how a novel approach to visualisation could help address the challenge of motivating residential retrofitting. Emerging retrofitting research and practice emphasises retro-cladding - the upgrading of the exterior facade of a building - using a modular approach. We present a machine-learning based approach aimed to motivate residential retrofitting through the generation of images and cost/benefit information describing climatically specific additions of external insulation and green roof panels to the façade of a Danish type house. Our approach chains a series of different models together, and implements a method for the controlled navigation of the principle generative styleGAN model. The approach is at a prototypical stage that implements a full workflow but does not include numerical evaluation of model predictions. Our paper details our processes and considerations for the generation of new datasets, the specification and chaining of models, and the linking of climatic data to travel through the latent space of a styleGAN model to visualise and provide a simple cost benefit report for retro-cladding specific to the local climates of five different Danish cities.
keywords Retrofitting; Machine Learning; Generative Adversarial Networks; Synthetic Datasets
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2021_150
id ecaade2021_150
authors Song, Yanan and Yuan, Philip F.
year 2021
title A Research On Building Cluster Morphology Formation Based On Wind Environmental Performance And Deep Reinforcement Learning
doi https://doi.org/10.52842/conf.ecaade.2021.1.335
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 335-344
summary Nowadays, numerous researchers emphasize the significance of the environmen-tal performance-driven generative methodology. However, due to the complex coupling mechanism of environmental regulation factors, the existing optimiza-tion engines and applications are time-consuming and cumbersome. In this re-search, we propose a novel design methodology based on Deep Reinforcement Learning (DRL). This paper is divided into 3 sections, including theoretical framework, design strategy, and practical application. It first introduces an over-view of basic principles, illustrating the potential advantages of DRL in perfor-mance data-driven design. Based on this, the paper proposes a DRL-based gener-ative method. We point out a more specific discussion about the application and workflow of core DRL elements in architectural design. Finally, taking a grid-form urban space composed by multitude high-rise building blocks as an exam-ple, we present a application through a DRL agent to conduct numerous active wind environmental performance-based design tests. It is an interactive and gen-erative design method, owning multiple advantages of timeliness, convenience, and intelligence.
keywords Deep Reinforcement Learning; Environmental Performance Design; Generative Design; Building Cluster Formation
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2021_307
id caadria2021_307
authors Ortner, Frederick Peter and Tay, Jing Zhi
year 2021
title Pandemic resilient housing - modelling dormitory congestion for the reduction of COVID-19 spread
doi https://doi.org/10.52842/conf.caadria.2021.2.589
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 589-598
summary In response to pandemic-related social distancing measures, this paper presents a computational model for simulating resident congestion in Singapores migrant worker dormitories. The model is presented as a tool for supporting evidence-based building design and management. In contrast to agent-based or network-based building analysis, we demonstrate a method for implementing a schedule-based building simulation. In this paper we present the key functions and outputs of the computational model as well as results from analysis of a case study and its design variants. Learnings on the comparative advantages of schedule modification versus physical design modification in assisting social distancing are presented in a discussion section. In the conclusion section we consider applications of our learnings to other dense institutional buildings and future directions for evidence-based design for resilient buildings.
keywords Collective,collaborative & interdisciplinary design; Computational design research & education; Disrupted practices,resilience,and social sustainability; Simulation,visualization and impact projection
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2021_318
id caadria2021_318
authors Schnabel, Marc Aurel, Kobayashi, Yoshihiro, Pencreach, Yoann, Bennadji, Amar, Choi, Dongsoo, Fiamma, Paolo, Fukuda, Tomohiro, Lo, Tian Tian, Narahara, Taro, Novak, Marcos, Ron, Ruth, Swarts, Matthew, Terzidis, Kostas, Tucker, Thomas and Vital, Rebeka
year 2021
title Virtual World16 - Virtual Design Collaboration for the Intersection of Academia and Industry
doi https://doi.org/10.52842/conf.caadria.2021.2.203
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 203-212
summary Over the past 13 years, the 'World16'-group has collaborated face-to-face on various challenges that architectural design faces within VR, architecture, urban design, and its delivery to the professional industries. The focus of the collaboration is to foster pathways of academic research and developments to industries and professions. In 2020, due to the restrictions of the pandemic, the group had to rethink and redevelop how to collaborate meaningfully and become resilient: the World16 collaborated akin to the Virtual Design Studios (VDS) of the Nineties for the first time exclusively virtually becoming the 'Virtual World16'. The paper presents the group's various projects that are transformative to the praxis in VR architecture, design and urban design, and critically reflects on the lessons learned from VDS-paradigm.
keywords Virtual Design Studio (VDS); Human-Computer Interaction (HCI); VR,AR,XR; Collaboration; 3D City Modelling
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_243
id caadria2021_243
authors Stojanovic, Djordje and Vujovic, Milica
year 2021
title Contactless and context-aware decision making for automated building access systems
doi https://doi.org/10.52842/conf.caadria.2021.2.193
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 193-202
summary In the current context of the COVID-19 pandemic, contactless solutions are becoming increasingly important to making buildings more resilient to the spread of infectious diseases in complementing social distancing and disinfection procedures for disease prevention. The presented study focuses on contactless technology and its role beyond automated interaction with the built environment by examining how it expedited space use and could improve compliance with sanitary norms. We introduce a conceptual framework for the intelligent operation of automated doors in an educational facility, enabled by the network of sensory devices and the application of computational techniques. Our research indicates how versatile data gathered by RFID systems, in conjunction with data extracted from occupancy schedules and sanitary protocols, can be used to enable the intelligent and context-aware application of disease prevention measures. In conclusion, we discuss the benefits of the proposed concept and its role beyond the need for social distancing after the pandemic.
keywords Human-Building Interaction; Interactive Environments; Responsive Environments; Occupancy Scheduling; Occupational Density
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2021_304
id sigradi2021_304
authors Andia, Alfredo
year 2021
title Synthetic Biology Imaginations for the Biscayne Bay, Florida
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1487–1497
summary This project attempts to reimagine Miami and coastal communities with the advent of climate change and the rise of biotechnology. We develop a speculative vision/plan for the Biscayne Bay estuary that envisions infrastructures that grow by themselves using synthetic biology. In this paper, we elaborate on how Synthetic Biology has evolved to become the fastest growing technology in human history, its potential in the development of large-scale infrastructures, and its impact on the future imaginations of Architecture.
keywords Automated Workflows, Synthetic Biology, Artificial Intelligence, Architecture, Sea-level Rise
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_447
id caadria2021_447
authors Belek Fialho Teixeira, Muge, Pham, Kieu, Caldwell, Glenda, Seevinck, Jennifer, Swann, Levi, Rittenbruch, Markus, Kelly, Nick, Santo, Yasuhiro, Garcia-Hansen, Veronica and Voltz, Kirsty
year 2021
title A User-Centred Focus on Augmented Reality and Virtual Reality in AEC: Opportunities and Barriers Identified by Industry Professionals - OPPORTUNITIES AND BARRIERS IDENTIFIED BY INDUSTRY PROFESSIONALS
doi https://doi.org/10.52842/conf.caadria.2021.2.273
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 273-283
summary This paper presents insights into the opportunities and barriers for using augmented reality (AR) and virtual reality (VR) in the architecture, engineering and construction (AEC) industry by contextualising how their adoption is leveraged in practices. Based on a review of literature, a qualitative study using semi-structured interviews was conducted with thirteen participants from AEC industries between five and thirty years of experience. Interviews were conducted face-to-face and virtually using questions focusing on participants experiences, perceptions of, and opinions about the use of AR/VR in AEC practice. Qualitative dissemination of key insights highlighted immediate and future possibilities for AR/VR, with current limitations that require future investigation from a user-centred perspective. Suggesting a XR-PACT framework, this paper frames key directions for future research to address current limitations and explore new opportunities that positively impact architecture and other professions, communities of building users.
keywords Augmented Reality; Virtual Reality; AEC; User Experience; Technology Adoption
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_000
id acadia21_000
authors Dörfler, Kathrin; Parascho, Stefana; Scott, Jane; Bogosian, Biayna; Farahi, Behnaz; del Castillo y López, Jose Luis García; Grant, June A.; Noel, Vernelle A.A.
year 2021
title ACADIA 2021: Realignments: Toward Critical Computation
doi https://doi.org/10.52842/conf.acadia.2021.001
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 681 p.
summary At the convergence of social, political, and environmental crises and a global pandemic ACADIA2021 reflects on realigning our practices to allow for alternative and constructive ways of knowledge and world making to address these issues. Computational systems have enabled creative solutions and innovations that benefit societies and demonstrate the ingenuity of the design community. However, left unchecked, they can also exacerbate issues of inequality, bias access and perpetuate methods and histories that may harm rather than foster positive change. With these entanglements of technology, power, and society as a backdrop, ACADIA2021 Realignments: Toward Critical Computation, asks us to question our current practices and priorities to address the urgency of the now. This conference provides a platform to engage with conversations, tools and methodologies that include knowledges and communities currently missing to enable realignments toward inclusive and critical practices in architecture across different scales. How can the computational design community critically address questions of emancipation, intersectionality and our computational publics?
series ACADIA
type proceedings
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_74113 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002