CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_216
id caadria2021_216
authors Aman, Jayedi, Tabassum, Nusrat, Hopfenblatt, James, Kim, Jong Bum and Haque, MD Obidul
year 2021
title Optimizing container housing units for informal settlements - A parametric simulation & visualization workflow for architectural resilience
doi https://doi.org/10.52842/conf.caadria.2021.1.051
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 51-60
summary In rapidly growing cities like Dhaka, Bangladesh, sustainable housing in urban wetlands and slums present a challenge to more affordable and livable cities. The Container Housing System (CHS) is among the latest methods of affordable, modular housing quickly gaining acceptance among local stakeholders in Bangladesh. Even though container houses made of heat-conducting materials significantly impact overall energy consumption, there is little research on the overall environmental impact of CHS. Therefore, this study aims to investigate the performance of CHS in the climatic context of the Korail slum in Dhaka. The paper proposes a building envelope optimization and visualization workflow utilizing parametric cluster simulation modeling, multi-objective optimization (MOO) algorithms, and virtual reality (VR) as an immersive visualization technique. First, local housing and courtyard patterns were used to develop hypothetical housing clusters. Next, the CHS design variables were chosen to conduct the MOO analysis to measure Useful Daylight Illuminance and Energy Use Intensity. Finally, the prototype was integrated into a parametric VR environment to enable local stakeholders to walk through the clusters with the goal of generating feedback. This study shows that the proposed method can be implemented by architects and planners in the early design process to help improve the stakeholders understanding of CHS and its impact on the environment. It further elaborates on the implementation results, challenges, limitations of the parametric framework, and future work needed.
keywords Multi-objective Optimization; Building Energy Use; CHS; Informal Settlements; Parametric VR
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_238
id acadia21_238
authors Anifowose, Hassan; Yan, Wei; Dixit, Manish
year 2021
title BIM LOD + Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2021.238
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 238-245.
summary Architectural Education faces limitations due to its tactile approach to learning in classrooms with only 2-D and 3-D tools. At a higher level, virtual reality provides a potential for delivering more information to individuals undergoing design learning. This paper investigates a hypothesis establishing grounds towards a new research in Building Information Modeling (BIM) and Virtual Reality (VR). The hypothesis is projected to determine best practices for content creation and tactile object virtual interaction, which potentially can improve learning in architectural & construction education with a less costly approach and ease of access to well-known buildings. We explored this hypothesis in a step-by-step game design demonstration in VR, by showcasing the exploration of the Farnsworth House and reproducing assemblage of the same with different game levels of difficulty which correspond with varying BIM levels of development (LODs). The game design prototype equally provides an entry way and learning style for users with or without a formal architectural or construction education seeking to understand design tectonics within diverse or cross-disciplinary study cases. This paper shows that developing geometric abstract concepts of design pedagogy, using varying LODs for game content and levels, while utilizing newly developed features such as snap-to-grid, snap-to-position and snap-to-angle to improve user engagement during assemblage may provide deeper learning objectives for architectural precedent study.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_447
id caadria2021_447
authors Belek Fialho Teixeira, Muge, Pham, Kieu, Caldwell, Glenda, Seevinck, Jennifer, Swann, Levi, Rittenbruch, Markus, Kelly, Nick, Santo, Yasuhiro, Garcia-Hansen, Veronica and Voltz, Kirsty
year 2021
title A User-Centred Focus on Augmented Reality and Virtual Reality in AEC: Opportunities and Barriers Identified by Industry Professionals - OPPORTUNITIES AND BARRIERS IDENTIFIED BY INDUSTRY PROFESSIONALS
doi https://doi.org/10.52842/conf.caadria.2021.2.273
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 273-283
summary This paper presents insights into the opportunities and barriers for using augmented reality (AR) and virtual reality (VR) in the architecture, engineering and construction (AEC) industry by contextualising how their adoption is leveraged in practices. Based on a review of literature, a qualitative study using semi-structured interviews was conducted with thirteen participants from AEC industries between five and thirty years of experience. Interviews were conducted face-to-face and virtually using questions focusing on participants experiences, perceptions of, and opinions about the use of AR/VR in AEC practice. Qualitative dissemination of key insights highlighted immediate and future possibilities for AR/VR, with current limitations that require future investigation from a user-centred perspective. Suggesting a XR-PACT framework, this paper frames key directions for future research to address current limitations and explore new opportunities that positively impact architecture and other professions, communities of building users.
keywords Augmented Reality; Virtual Reality; AEC; User Experience; Technology Adoption
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_251
id ecaade2021_251
authors Carvalho, Joao, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title Ceramic AM Gantry Structures - Discretisation and connections between beams and columns
doi https://doi.org/10.52842/conf.ecaade.2021.2.483
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 483-492
summary The manufacture of architectural components driven by digital design tools and Additive Manufacturing (AM) allows the achievement of highly evolved constructive systems, more integrated into a specific reality to which it is intended to respond, resulting in unique and adapted solutions with high geometric and material performances. Considering the application of these methods to common structural elements, namely beams and columns, for which there are already several examples demonstrating their feasibility, we find that it is necessary to provide a sound answer to an element that is fundamental for these proposals to function together as a single system - the moment of connection between beams and columns. In this sense, this paper proposes the design and test of a set of connections with adapted geometry between beams and columns, produced through ceramic Liquid Deposition Modelling (LDM), applying logics of topological optimization. This work foresees the development of a constructive system that incorporates reversible and irreversible connections, being formalised in a set of gantry structures formed by two vertical elements and a horizontal one, giving the comparative model between digital design and manufacture methods and the traditional ones.
keywords Ceramic AM; Performative design; Computational design; Connections; Ceramic gantry structure
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac202119204
id ijac202119204
authors Castelo-Branco, Renata; Catarina Brás, António Menezes Leitao
year 2021
title Inside the Matrix: Immersive Live Coding for Architectural Design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 174–189
summary Algorithmic Design (AD) uses computer programs to describe architectural models. These models are visual by nature and, thus, greatly benefit from immersive visualization. To allow architects to benefit from the advantages of Virtual Reality (VR) within an AD workflow, we propose a new design approach: Live Coding in Virtual Reality (LCVR). LCVR means that the architect programs the design while immersed in it, receiving immediate feedback on the changes applied to the program. In this paper, we discuss the benefits and impacts of such an approach, as well as the most pressing implementation issues, namely the projection of the programming environment onto VR, and the input mechanisms to change the program or parts of it. For each, we offer a critical analysis and comparison of the various solutions available in the context of two different programming paradigms: visual and textual.
keywords Virtual Reality, Algorithmic Design, Live Coding, Programming Environments, Interaction Mechanisms
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_266
id caadria2021_266
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin, Du, Ruijie and Hu, Xinchuang
year 2021
title Interactive Virtual Sand Table - A theoretical review on its application towards Urban Planning
doi https://doi.org/10.52842/conf.caadria.2021.2.629
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 629-638
summary The sand table is a tool of expression of urban planning.With the development of computer science and technology,virtual reality technology is playing an important role in many aspects of urban planning and design,as well as,the virtual sand table.This article analyzes the limitations of the current urban planning sand table from designers and other participants perspectives. It analyses the advantages of applying interactive technology in a sand table for urban planning and proposes using such interactive technology in the future. This paper will also investigate three aspects of interactions: human-computer interaction technology, collaborative interaction technology, remote visual interaction technology. The application of interactive technology on the virtual sand table, on the one hand, can carry out a multi-angle forward-looking analysis of the problems of urban construction and improve the efficiency of planning and approval, and development; on the other hand, it can increase public participation in urban planning and design.
keywords interactive technology; urban planning; urban planning sand table; electronic sand table
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_93
id sigradi2021_93
authors Deon, Luisa, Isele, Priscila, Arena, Alana and Mussi, Andrea
year 2021
title Codesign and Digital Fabrication: Applications in the Project Process with Visually Impaired People and Children
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 981–992
summary The Co-design method has great relevance in the inclusion of different classes of users in the Design Process (DP), such as Visually Impaired People (PwDS) and children. This work indicates results of three Co-design dynamics. Focus Group, guided tour, semi-structured interviews, questionnaires and workshops were carried out, as strategies for the inclusion of different users in the DP. The process of designing an inclusive signage board for PwDS is presented. Next, the project of inclusive playgrounds for visually impaired children. Finally, an activity carried out with basic education students, combining new technologies in the child's learning process. Participants were encouraged to express their knowledge through different tools that adapted to their reality. The results show the importance of including different methods, tools and resources to support the DP. In addition, Digital Fabrication and Prototyping are techniques that enhance Co-design, as they act as congratulators for communication between the designer and users.
keywords Codesign, Fabricaçao Digital, Inclusao, Processo de Projeto. Projeto Colaborativo.
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2021_058
id ascaad2021_058
authors ElGewely, Maha; Wafaa Nadim, Mostafa Talaat, Ahmad El Kassed,Mohamed Yehia, Slim Abdennadher
year 2021
title Immersive VR Environment for Construction Detailing Education: BIM Approach
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 114-128
summary According to literature in education, adults learn best when learning is active, self-directed, problem-based, and relevant to their needs. In Building Construction Education, construction site visits provide students with real-life practical experience which are considered an extension for classroom. Nevertheless, it is challenging to integrate construction site visits regularly during the academic semester with respect to the class specific needs. Virtual Reality as an interactive immersive technology may facilitate virtual construction site that meets the learning needs where students can explore and build in a real scale environment. The proposed VR environment is an HMD VR platform for construction detailing that provides experiential learning in a zero-risk environment. It builds on integrating VR technology as a medium and Building Information Modeling (BIM) as a repository of information. This work discusses the proposed environment curricular unit prototype design, implementation, and validation. System usability and immersion are assessed both qualitatively and quantitatively. After considering the feedback, The VR environment prototype is then validated on the level of learning outcomes, providing the evidence that it would enhance students’ engagement, motivation and achievement accordingly.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2023_127
id caadria2023_127
authors Franze, Anthony, Caldwell, Glenda, Belek Fialho Teixeira, Muge and Rittenbruch, Markus
year 2023
title Informing User-Centred Approaches to Augmented Custom Manufacturing Practices
doi https://doi.org/10.52842/conf.caadria.2023.1.353
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 353–362
summary This practice-based research presents insights into the potential and challenges for augmented and mixed reality (AR/MR) technology to enhance Australian small-to-medium (SME) custom manufacturers’ agility to overcome existing Industry 4.0 (I4.0) workforce productivity and efficiency challenges. Moreover, it seeks to understand the technology’s ability to support custom manufacturers and the architectural, engineering and construction (AEC) sector transition to a more human-centric Industry 5.0 (I5.0) model, whereby the well-being of the fabricator is placed back at the centre of manufacturing processes. This qualitative study draws on interviews with eleven Australian custom manufacturing industry professionals to inform pertinent themes around fabricators’ current use and perceptions of mixed reality technology. Results indicate benefits for fabricators in reducing 2D drawing and task-related ambiguities in fabrication and assembly practices and reveal factors surrounding underutilisation. Synthesising insights and reflecting on Teixeira et al., (2021)’s XR-PACT framework, key research areas are identified for future AR/MR development centred on fabrication users’ distinct needs to improve accessibility, empower fabricators and ultimately assist the competitiveness of custom manufacturers and the AEC sector.
keywords Augmented and Mixed Reality, Custom Manufacturing, SME, User-centred design, Industry 5.0
series CAADRIA
email
last changed 2023/06/15 23:14

_id acadia21_212
id acadia21_212
authors Gillespie, David; Qin, Zehao; Aish, Francis
year 2021
title An Extended Reality Collaborative Design System
doi https://doi.org/10.52842/conf.acadia.2021.212
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 212-221.
summary This paper presents a new system that enables an eXtended Reality (XR) collaborative design review process, by augmenting an existing physical mockup or environment with virtual models at 1:1 scale in-situ. By using this new hybrid approach, existing context can be extended with minimal or no base physical structure through a simulated VR/AR environment to facilitate stakeholder design collaboration in a manner that was previously either cost prohibitive or technically unfeasible. Through combining real and virtual in this way, the sense of realism can be enhanced, increasing engagement and participation in the design process. An approach to apply AR/VR to uncontrolled environments is described, allowing it to overcome challenges such as tracking and mapping, and allowing users to walk around freely in-situ.

Two examples are presented where the system has been used in live project environments, one as a design tool for client review and engagement, and the other as part of a public planning process.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_331
id caadria2021_331
authors Globa, Anastasia, Parker, Callum, Philp, Jude and Antonios, John
year 2021
title Big Data Bugs - Investigating the design of Augmented Reality applications for museum exhibitions
doi https://doi.org/10.52842/conf.caadria.2021.2.305
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 305-314
summary This paper presents a reflection on the co-design approach taken for designing a web-based and smartphone-augmented reality (AR) application (app) for a local museum exhibit on geo-located data for entomology specimens. The AR app allows visitors to spatially visualise insect specimens in-situ and view more detailed information through their own devices. The design of the app was guided by continuous input from curators of the museum to ensure it met their requirements. The contribution of this paper is two-fold: (1) design recommendations for AR apps created for museum exhibitions, which are derived from a focus group session with museum curators; and (2) considerations for co-designing AR apps in museum contexts, based on a reflection of the design process. This paper details the iterative co-design process that was adopted for the Big Data Bugs project and presents a short summary of results deriving from a focus group testing with museum curators.
keywords augmented reality; data visualization; human computer interactions; museum exhibitions; co-design
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2021_301
id caadria2021_301
authors Goepel, Garvin and Crolla, Kristof
year 2021
title Secret Whispers & Transmogrifications:a case study in online teaching of Augmented Reality technology for collaborative design production.
doi https://doi.org/10.52842/conf.caadria.2021.2.021
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 21-30
summary This paper focusses on teaching the integration of Augmented (AR) and Mixed Reality (MR), combined referred to as Extended-Reality (XR), and photogrammetry technology into handicraft using an online-taught digital fabrication workshop as an educational case study. Set up in response to restrictions from Covid-19, workshop 'Secret Whispers & Transmogrifications' had students and instructors around the world participate in a course that challenged our understanding of educating craft and technology without the necessity of physical presence. The integration of AR into craftsmanship enhances architectural design and fabrication processes as it overlays computation-driven information onto the hands of the end user. These computer-numerically-controlled workflows incorporate and rely on manual actions as an integral part of a process that is typified by inevitable, unpredictable, human error. In doing so, the workshop questions common infatuation with precision in digital fabrication and construction by striving for alternative approaches that embrace the inaccuracies and imprecisions innate to technologically-augmented human craftsmanship. Participants took part in a hands-on clay modelling 'secret whispers' experiment that was designed to introduce theoretical concepts and applications of XR technology into the production workflows. This paper concludes by highlighting that the accessibility of today's technology enables AR-enhanced craftsmanship to be successfully taught remotely and online.
keywords collaborative design; augmented-reality ; mixed reality ; human-computer interaction ; tolerances and error
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia21_232
id acadia21_232
authors Goepel, Garvin; Crolla, Kristof
year 2021
title Augmented Feedback
doi https://doi.org/10.52842/conf.acadia.2021.232
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 232-237.
summary Augmented Reality (AR) has the potential to create a paradigm shift in the production of architecture.

This paper discusses the assembly and evaluation of a bamboo prototype installation aided by holographic instructions. The case study is situated within the framework of AR-driven computational design implementation methods that incorporate feedback loops between the as-built and the digital model.

The prototype construction aims to contribute to the ongoing international debate on architectural applications of digital technology and computational design tools and on the impact these have on craftsmanship and architecture fabrication. The case study uses AR-aided construction techniques to augment existing bamboo craftsmanship in order to expand its practically feasible design solution space. Participating laypersons were challenged to work at the interface of technology and material culture and engage with both latest AR systems and century-old bamboo craft.

This paper reflects on how AR tracking can be used to create a constant feedback loop between as-built installations and digitally designed source models and how this allows for the real-time assessment of design fidelity and deviations. The case study illustrates that this is especially advantageous when working with naturally varying materials, like bamboo, whose properties and behaviour cannot straightforwardly be accurately simulated digitally.

The paper concludes by discussing how augmented feedback loops within the fabrication cycle can facilitate real-time refinement of digital simulation tools with the potential to save time, cost, and material. The augmentation of onsite available skills facilitates the democratisation of non-standard architecture design production.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_346
id acadia21_346
authors Gordon, Matthew; Calvo, Roberto Vargas
year 2021
title Digital Deconstruction and Design Strategies from Demolition Waste
doi https://doi.org/10.52842/conf.acadia.2021.346
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 346-351.
summary The project develops pre- and post-demolition digital assessment protocols in order to better inform reclaimed material implementation in new projects. The application of the protocols are demonstrated in a pavilion constructed of reused timber (Figure 1). By facilitating the data capture, analysis, identification, and characterization of available secondary raw materials, and creating database systems for pre- and post-demolition sites, it promotes gains in high quality upcycled materials for new construction projects. Modern reality capture technologies allow for collecting high density and quality Construction and Demolition Waste (CDW) data, presenting the opportunity to also increase the reliability and trust in upcycled materials by data specifically structured to relevant actors.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ijac202119305
id ijac202119305
authors Hosseini, Seyed Vahab; Alim, Usman R.; Oehlberg, Lora; Taron, Joshua M.
year 2021
title Optically illusive architecture (OIA): Introduction and evaluation using virtual reality
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 291–314
summary Architects and designers communicate their ideas within a range of representational methods. No single instance of these methods, either in the form of orthographic projections or perspectival representation, can address all questions regarding the design, but as a whole, they demonstrate a comprehensive range of information about the building or object they intend to represent. This explicates an inevitable degree of deficiency in representation, regardless of its type. In addition, perspective-based optical illusions manipulate our spatial perception by deliberately misrepresenting the reality. In this regard, they are not new concepts to architectural representation. As a consequence, Optically Illusive Architecture (OIA) is proposed, not as a solution to fill the gap between the representing and represented spaces, but as a design paradigm whose concept derives from and accounts for this gap. By OIA we aim to cast light to an undeniable role of viewpoints in designing architectural spaces. The idea is to establish a methodology in a way that the deficiency of current representational techniques—manifested as specific thread of optical illusions—flourishes into thoughtful results embodied as actual architectural spaces. Within our design paradigm, we define a framework to be able to effectively analyze its precedents, generate new space, and evaluate their efficiencies. Moreover, the framework raises a hierarchical set of questions to differentiate OIA from a visual gimmick. Furthermore, we study two OIA-driven environments, by conducting empirical studies using Virtual Reality (VR). These studies bear essential information, in terms of design performance, and the public’s ability to engage and interact with an OIA space, prior to the actual fabrication of the structures.
keywords Architectural representation, optical illusion, design evaluation, virtual reality
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_274
id caadria2021_274
authors Kawai, Yasuo
year 2021
title Urban Space Simulation System for Townscape Ordinance
doi https://doi.org/10.52842/conf.caadria.2021.2.479
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 479-488
summary In this study, a game engine-based urban space simulation system for townscape ordinance was developed and evaluated. For accurate evaluation of a townscape, it is important for the townscape simulation to be as close to reality as possible from various perspectives. The proposed system employs a freely moving first-person viewpoint with different height and origin variations; the building height and exterior wall color can also be changed. To evaluate the system, the simulation and photographic images were compared. The photographic images exhibited a higher gaze rate on spatial components; high gaze rates were also observed for vehicle and pedestrian in the photographic images. Therefore, we recreated dynamic spatial components such as vehicles and pedestrians. Additionally, we successfully reproduced the night townscape via a switchable light source and enabled the control of the numbers of poles and signs. The townscape reproduced by the proposed system could contribute to townscape planning. In the future, a more versatile urban space simulation system that combines various sources of urban information can be developed.
keywords Landscape Simulation; Game Engine; Urban Planning; Gaze Elements; Sequence
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_036
id ecaade2021_036
authors Kikuchi, Naoki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Landscape Visualization by Integrating Augmented Reality and Drones with Occlusion Handling to Link Real and Virtual Worlds - Towards city digital twin realization
doi https://doi.org/10.52842/conf.ecaade.2021.2.521
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 521-528
summary In the field of urban architecture and design, augmented reality (AR)-based landscape visualization is useful for building consensus among stakeholders at the design stage. An integrated AR and drone method can visualize future and past landscapes from an aerial perspective but has to address the problem of occlusion, where a 3D virtual model is displayed in front of the real-world objects. In this study, we propose an AR and drone integrated landscape visualization method to handle occlusion by linking the drone's location information in the real world and the camera in the virtual world. The method uses a 3D model of an existing building, which is part of the city model, to represent the 3D model of the design target as if the target were behind the existing building in the real world. Users can use the perspective of the drone, which flies along a set route, to examine the future landscape with high accuracy, as visualized using AR with occlusion handling.
keywords Digital twin; Occlusion handling; Landscape visualization; Web-based augmented reality (web AR); Drone; Urban design
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_371618 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002