CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 491

_id ascaad2021_021
id ascaad2021_021
authors Albassel, Mohamed; Mustafa Waly
year 2021
title Applying Machine Learning to Enhance the Implementation of Egyptian Fire and Life Safety Code in Mega Projects
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 7-22
summary Machine Learning has become a significant research area in architecture; it can be used to retrieve valuable information for available data used to predict future instances. the purpose of this research was to develop an automated workflow to enhance the implementation of The Egyptian fire & life safety (FLS) code in mega projects and reduce the time wasted on the traditional process of rooms’ uses, occupant load, and egress capacity calculations to increase productivity by applying Supervised Machine Learning based on classification techniques through data mining and building datasets from previous projects, and explore the methods of preparation and analyzing data (text cleanup- tokenization- filtering- stemming-labeling). Then, provide an algorithm for classification rules using C# and python in integration with BIM tools such as Revit-Dynamo to calculate cumulative occupant load based on factors which are mentioned in the Egyptian FLS code, determine classification and uses of rooms to validate all data related to FLS. Moreover, calculating the egress capacity of means of egress for not only exit doors but also exit stairs. In addition, the research is to identify a clear understanding about ML and BIM through project case studies and how to build a model with the needed accuracy.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_186
id sigradi2021_186
authors Isele, Priscila and Mussi, Andrea
year 2021
title Inclusive Architecture: Landscaping Codesign in Children's Playgrounds
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1397–1408
summary Children's playgrounds or also called playgrounds are open spaces, the basis for children's recreation. Important for the inclusion and mobility of visually impaired children in the social environment, through inclusive urban facilities that stimulate new experiences for their cognitive development. In this context, the use of Co-design with visually impaired people, in the design processes of children's playgrounds, assumes an importance for an inclusive project based on their experiences. Thus, it aimed to promote a project together, to provide more comfort and safety to users. It presents as main results as better colors, materials and types of toys for children with visual impairment to be competent in a playground including from the application of methods, tools and resources in the Co-design process.
keywords Codesign, Playgrounds infantis, Pessoas com Deficiencia Visual.
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_081
id caadria2021_081
authors Li, Danrui, Huang, Rong and Wu, Yihao
year 2021
title Sensitivity Analysis of Pedestrian Simulation on Train station platforms
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 529-538
doi https://doi.org/10.52842/conf.caadria.2021.2.529
summary As the concerns for pedestrian safety in station design are growing, multi-agent simulation becomes more widely used nowadays. While the difference between inputs in regard to their impacts on simulation outputs needs further research, previous studies fail to provide a global analysis of it in complex environments with limited computation resources. Therefore, regression-based SRC and revised Morris Method are employed in a sensitivity analysis of train station platform simulations. Results show that preference for escalators and alighting rate are influential parameters to all three concerned outputs while the standard deviation of walking speed is negligible. Given that most simulation users have limited time and resources, this paper provides a list of parameters that deserve the time and effort to calibrate together with a factor fixing method that can be applied in similar scenarios. In this way, simulation users can lower the uncertainty of train station simulations more efficiently.
keywords Sensitivity analysis; Train station; Pedestrian; Simulation; Morris Method
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_283
id caadria2021_283
authors Sanatani, Rohit Priyadarshi, Chatterjee, Shamik Sambit and Manna, Ishita
year 2021
title Subject-specific Predictive Modelling for Urban Affect Analysis
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 387-396
doi https://doi.org/10.52842/conf.caadria.2021.2.387
summary Recent developments in crowd-sourced data collection and machine intelligence have facilitated data-driven analyses of the affective qualities of urban environments. While past studies have focused on the commonalities of affective experience across multiple subjects, this paper demonstrates an integrated framework for subject-specific affective data collection and predictive modelling. For demonstration, 10 field observers recorded their affective appraisals of various urban environments along the scales of Liveliness, Beauty, Comfort, Safety, Interestingness, Affluence, Stress and Familiarity. Data was collected through a mobile application that also recorded geo-location, date, time of day, a high resolution image of the users field of view, and a short audio clip of ambient sound. Computer vision algorithms were employed for extraction of six key urban features from the images - built score, paved score, auto score, sky score, nature score, and human score. For predictive modelling, K-Nearest Neighbour and Random Forest regression algorithms were trained on the subject-specific datasets of urban features and affective ratings. The algorithms were able to accurately assess the predicted affective qualities of new environments based on the specific individuals affective patterns.
keywords Urban Affect; Subjective Experience; Predictive Modelling; Affect Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_310
id ecaade2021_310
authors Trento, Armando, Fioravanti, Antonio, Borgese, Daniela and Gratteri, Andrea
year 2021
title Safety Information Modelling to Support Planning of Archeological Restoration Site - Preserving workers from COVID-19 at "Venus and Rome Temple"
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 77-86
doi https://doi.org/10.52842/conf.ecaade.2021.2.077
summary At the time of a global pandemic, risk management in the AEC industry faces novel challenges: to ensure continuity production in worksites, National Governments have defined general protocols. Restrictions regarding individual behaviours are based on criteria as simple as possible but, designing and planning Healthy and Safe (HS) site activities introduces a higher level of complexity to be managed. Narrowing the field to Archaeological buildings, this research aims at defining a method and implementation path for a system supporting HS designers in reducing Covid-19 risk in restoration worksites. Methodologically, an action research approach was adopted, experimenting with some engineering requirements in the case study of the ongoing restoration of "Temple of Venus and Rome" in the "Parco Archeologico del Colosseo" in Rome.Since each scheduled activity assigns a number of actors to a workspace for a time-lapse, the idea is to check HS space classes (e.g. working; resting; paths; storage; etc.) - modelled extending commercial BIM tools - against ad hoc process rules (e.g. maximum presence allowed simultaneously). This early-stage plug-in system evaluates Covid-related safety performance of designed 3D worksite layout versus 4D execution program, eventually providing advice about distancing and physical interferences.
keywords Safety Planning; BIM for HS; Risk Management; Archeo BIM; HS Analysis
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_115
id caadria2021_115
authors Chen, Qin Chuan, Lakshmi Narasimhan, Vaishnavi and Lee, Hyunsoo
year 2021
title The potential of IoT-based smart environment in reaction to COVID-19 pandemic
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 709-718
doi https://doi.org/10.52842/conf.caadria.2021.2.709
summary COVID-19 was first reported in late December 2019 and quickly become a global health crisis. In the COVID-19 pandemic context, the dense and open characteristics make the public spaces a potential virus transmission hotspot. Therefore, it is extremely critical to adopt a more advanced and effective method in public environments to slow down its spread until a vaccine is widely used. A smart environment in the form of IoT, also known as the architecture of IoT, consists of three layers: perception layer, network layer, and application layer. A smart environment allows data and activities that happen in this environment to be collected, processed, and shared in real-time through various sensors. It can be introduced for early detection, tracking, and monitoring of potential confirmed cases. The smart environment is considered one of the most promising approaches to face and tackle the current scenario. However, research focusing on the potential of IoT smart environment in reaction to COVID-19 is still meager. Therefore, this paper identifies the smart environments potential based on the concept of IoT architectures three layers and further discusses how IoT can be introduced in public spaces to help battle the pandemic.
keywords Internet of Things; Smart environment; COVID-19
series CAADRIA
email
last changed 2022/06/07 07:55

_id cdrf2021_221
id cdrf2021_221
authors Sijia Gu, Yue Lu, Yuwei Kong, Jiale Huang, and Weishun Xu
year 2021
title Diversifying Emotional Experience by Layered Interfaces in Affective Interactive Installations
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_21
summary This paper aims to improve users’ experience in affective interactive installations through the diversification of interfaces. With logically organized hierarchical experience, diverse interfaces with emotion data as inputs enhance users’ emotional interaction to be more natural and immersive. By using facial affect detection technology, an installation with diverse input interfaces was tested with an organic formal setting. Mechanical flowers and support structure based on the organic form were deployed as its physical output for a multitude of sensorial dimensions. With actions of the mechanical flowers, such as blooming, closing, rotating, glowing and blinking, a layered experiential sequence was created and the atmosphere of the installation was evaluated to be more engaging. In this way, the layered complexity of information was transferred to users’ immersive emotional experience. We believe that the practices in this work can contribute to deeper emotional engagement with users and add new layers of emotional interactivity.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_167
id ecaade2021_167
authors Zhu, Zhelun, Coraglia, Ugo Maria, Simeone, Davide and Fioravanti, Antonio
year 2021
title Spaces Identity Evaluation aNd Assignment - SIENA - A duck typing approach for automatic recognition and semantic enrichment of architectural spaces
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 341-350
doi https://doi.org/10.52842/conf.ecaade.2021.2.341
summary This paper presents the development of SIENA - Space Identity Evaluation aNd Assignment - based on duck typing for automatic recognition and semantic enrichment of the architectural spaces. This method is known in computer science as a form of abductive reasoning and leverages on the observable features of an object in order to establish its recognition. As result, the spatial identity is object-oriented and can be dynamically defined. In this research, the duck typing approach has been achieved with the support of BIM methodology and graph database. The former allows information-based modeling of an architectural project while the latter makes possible the representation of the knowledge along with their relationships. Consequently, this research may have many possible applications, especially as a valid design support tool in the very first design stages. Furthermore, an efficient spatial identity detection could contribute to the development of further human-machine interactions and therefore a possible optimization of the design process.
keywords Semantics; Graph database; Duck typing; Space identification
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_085
id caadria2021_085
authors Förster, Nick, Bratoev, Ivan, Fellner, Jakob, Schubert, Gerhard and Petzold, Frank
year 2021
title Designing Crowd Safety - Agent-Based Pedestrian Simulations in the Early,Collaborative Design Stages
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 729-738
doi https://doi.org/10.52842/conf.caadria.2021.2.729
summary Contemporary agent-based pedestrian simulations offer great potential to evaluate architectural and urban design proposals in terms of medical risks, crowd safety, and visitor comfort. Nevertheless, due to their relative computational heaviness and complicated input-parameters, pedestrian simulations are not employed during the design process commonly. Simulation results significantly impact planning decisions, especially when they are already available in the early design phases. This paper analyzes the requirements of pedestrian simulations for early planning stages, such as seamless integration into iterative and collaborative design processes, interactivity, and appropriate visualization of results. For this purpose, we combine two existing projects: a high-accuracy pedestrian simulation and the CDP//Collaborative Design Platform. To adapt the simulation method to the requirements of early planning stages, we investigate interactions that blend intuitively with the design process and enable multiple users to interact simultaneously. We simplify simulations input parameters to match the level of detail of the early design phases. The simulation model is adapted to facilitate continuous and spontaneous interactions. Furthermore, we develop visualization techniques to support initial design negotiations and present strategies for compensating computation time and giving constant feedback to a dynamic design process.
keywords Pedestrian Simulation; Agent-Based Simulation; Early Design Stages; Collaborative Design; Human Computer Interaction
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2021_4
id sigradi2021_4
authors Song, Yang, Koeck, Richard and Luo, Shan
year 2021
title [AR]OBOT: the AR-Assisted Robotic Fabrication System for Parametric Architectural Structures
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1115–1126
summary [AR]OBOT tries to assist the robotic fabrication process for parametric architectural structures with Augmented Reality (AR) technology to explore new possibilities for easy architectural robotic operations. Due to the lack of computer programming skills and the disconnection between design and fabrication, architects are hampered in the robotic operation process. As part of our project, we create a visualization prototype in which robotic and on-site related information is being shown through AR devices overlapping on the physical world; followed by a robotic trajectory planning method in which designers’ gestures are being identified by AR as location nodes and calculated with the obstacle avoidance system; and an operation process in which robots are being controlled by human gestures and interactions with holographic simulation to enhance the robotic fabrication process efficiency and safety. In this paper, we share the preliminary results to demonstrate a new kind of AR-assisted workflow for the architects to perform the robotic fabrication of parametric architectural structures intuitively.
keywords Augmented Reality, Robotic Fabrication, Human-robot Collaboration
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_143
id caadria2021_143
authors Song, Yang, Koeck, Richard and Luo, Shan
year 2021
title AR Digi-Component - AR-assisted,real-time,immersive design and robotic fabrication workflow for parametric architectural structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 253-262
doi https://doi.org/10.52842/conf.caadria.2021.2.253
summary This research project, entitled AR Digi-Component, tries to digitalize the traditional architectural components and combines Augmented Reality (AR) technologies to explore new possibilities for architectural design and assembly. AR technology and Digitalize components will help to achieve a real-time immersive design and an AR-assisted robotic fabrication process through the augmented environments. As part of the AR Digi-Component project, we created an experimental design prototype in which designers gestures are being identified in AR real-time immersive design process, and a fabrication prototype in which traditional 2D drawings are being replaced by 3D on-site holographic guidance, followed by an assembly process in which robotic operations are being controlled by humans within an AR simulation to enhance the assembly efficiency and safety. In this paper, we are sharing the preliminary research results of such AR-assisted tests, for which we used a UR10 Robotic arm in combination with Microsoft HoloLens as well as in terms of software Rhino, HAL Robotics, FURobot, PX Simulate, and Fologram plugin in Grasshopper, to demonstrate new kind of applications and workflow of AR technology for real-time, immersive design and robotic fabrication.
keywords Augmented Reality; immersive design; holographic assembly instruction; robotic fabrication; real-time interaction
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2021_103
id ascaad2021_103
authors Yönder, Veli
year 2021
title Case Studies of Incorporating BIM Models in the Digital Game Environment: Building Game Environment with BIM Tools and Game Scripts
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 507-520
summary The emerging video game industry has provided opportunities for innovation and transformation starting with the late 20th century. In line with ever-changing needs and increasing demand, the extent of the digital gaming industry has outreached to the education sector and its subdomains besides the entertainment industry and its sub-branches as users obtain ambidextrous achievements through the gamification processes in which an experimental learning environ-ment is formed naturally. Numerous dissimilar disciplines from en-gineering, architecture, construction, work safety, renewable ener-gy, education, and health, etc. train users thru educational simula-tions prepared in digital environments to amplify their learning processes. Undoubtedly, the fields of architecture, engineering, and construction (AEC) are gradually adapting to the conditions of ac-celerating digitalization efforts in this era. Thus, BIM technology being one of the common denominators of the digitalization efforts in those fields serves the diverse agenda of the users with increas-ing popularity. Professional interaction and education may greatly benefit from conjoining the model outputs of BIM technology and interactive visual fidelity of the digital gaming industry. This ongo-ing research project aims to develop and compare two different BIM-based models of the historic Çardak Khan and the contempo-rary student center building by creating sophisticated digital game environments with architectural educational space-based informa-tive scenarios. Space-based virtual cards were created for each sce-ne. Research results in response to the diversity of spaces, geomet-ric qualities, number of scenarios and sequences were reported. Fur-thermore, textual data such as game scripts and drafts were ana-lysed with Voyant Tools.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2021_046
id ecaade2021_046
authors Lorenz, Wolfgang E., Faller, Arnold and Wurzer, Gabriel
year 2021
title DAttE - Detection of Attic Extensions - Workflow to analyze the potentials of roofs in an urban environment
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 375-384
doi https://doi.org/10.52842/conf.ecaade.2021.1.375
summary European cities like Vienna are characterized by strong growth and, as a result, by high demand for living space. Extending the attic is one way of meeting this demand. However, there is a lack of data to know which roofs are already expanded and to what extent. The city is interested in the data in two ways: firstly, in relation to the distribution of potentials (a possible change in population density, for example, has an impact on infrastructure and parking space) and, secondly, in relation to the material composition (city as a material resource). This paper provides a workflow to fill this gap of knowledge. The new methods of detecting attic extensions are described and a case study is given at the end to show workability.
keywords point clouds; thermal detection; drone detection; participation
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
doi https://doi.org/10.52842/conf.caadria.2021.1.743
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
doi https://doi.org/10.52842/conf.caadria.2021.2.223
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
doi https://doi.org/10.52842/conf.acadia.2021.328
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_235
id sigradi2021_235
authors Akcay Kavakoglu, Aysegul
year 2021
title Computational Aesthetics of Low Poly: [Re]Configuration of Form
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 17–28
summary Low-poly modeling as an emerging field in visual arts, product design and architecture has an essential effect both on the designer's and the viewer/user's experience. It has an advanced abstraction ability over the reconfiguration of form. This paper examines the visual features of low-poly form in terms of the computability of its aesthetics. A visual feature classification is made by referencing George David Birkhoff's aesthetic measure theory based on the complexity and order relationship. Topo[i]wall installation has been examined as a case study during the analysis. The relationship between form, computation, aesthetics and human-computer interaction are elaborated according to the results. It has been observed that low poly modeling offers a variation set in terms of compositional features, which are proportion, balance, vertical and horizontal network system while protecting its unity through the analysis of the generated computational model.
keywords computational aesthetics, low poly, form configuration, projection mapping, media art
series SIGraDi
email
last changed 2022/05/23 12:10

_id ecaade2021_177
id ecaade2021_177
authors Aksin, Feyza Nur and Arslan Selçuk, Semra
year 2021
title Use of Simulation Techniques and Optimization Tools for Daylight, Energy and Thermal Performance - The case of office module(s) in different climates
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 409-418
doi https://doi.org/10.52842/conf.ecaade.2021.2.409
summary In recent years, performance-based design has become the key issue behind design decisions in the construction industry towards reducing energy consumption. Various simulation techniques and optimization tools have started to be used together for performance objectives to reach optimal solutions for complex design process. In the sector, one of the most energy-consuming buildings is offices. This study examines the effects of integration of simulation programs and optimization tools on the daylight, energy and thermal performances of office buildings on different climates. Two cities, Ankara and Izmir, in Turkey selected as locations. The study is carried out with total of thirteen parameters. With Rhinoceros/Grasshopper software, Honeybee, Ladybug and Octopus plug-ins used for daylight, energy and thermal simulation and performance optimization. With the results obtained, the optimal configurations related with selected parameters are determined for reducing energy consumption while improving daylight and thermal performance on different climates.
keywords daylight, energy and thermal comfort performance; multi-objective optimization; performance-based design; office buildings
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_507441 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002