CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 587

_id ecaade2021_038
id ecaade2021_038
authors Nakabayashi, Mizuki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Mixed Reality Landscape Visualization Method with Automatic Discrimination Process for Dynamic Occlusion Handling Using Instance Segmentation
doi https://doi.org/10.52842/conf.ecaade.2021.2.539
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 539-546
summary Mixed reality (MR), which blends real and virtual worlds, has attracted attention as a visualization method in landscape design. MR-based landscape visualization enables stakeholders to examine landscape changes at actual scale in real-time at the actual project site. One challenge in MR-based landscape visualization is occlusion, which occurs when virtual objects obscure physical objects that are in the foreground. Previous research proposed an MR-based landscape visualization method with dynamic occlusion by using semantic segmentation of deep learning. However, this method has two problems. The first is that the same kind of objects that are grouped into one or overlapped types are classified as the same object, and the other is that the foreground objects have to be defined in pre-processing. In this study, we developed a system for large-scale MR landscape visualization that enables the recognition of each physical object individually using instance segmentation, and it is possible to accurately represent the positional relationship by comparing the coordinate information of the 3D virtual model and all physical objects.
keywords landscape visualization; mixed reality; instance segmentation; dynamic occlusion handling; deep learning
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2021_439
id caadria2021_439
authors Shi, Zhongming, Herthogs, Pieter, Li, Shiying, Chadzynski, Arkadiusz, Lim, Mei Qi, von Richthofen, Aurel, Cairns, Stephen and Kraft, Markus
year 2021
title Land Use Type Allocation Informed by Urban Energy Performance: A Use Case for a Semantic-Web Approach to Master Planning - A USE CASE FOR A SEMANTIC-WEB APPROACH TO MASTER PLANNING
doi https://doi.org/10.52842/conf.caadria.2021.2.679
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 679-688
summary Cities are growing fast and facing unprecedented challenges as urban populations grow and resources are becoming scarce. A citys master planning involves a series of decision-making processes and requires knowledge from various domains. Urban planners are seeking computational support. We present a use case of land use type or building function allocations informed by urban energy performance as a pilot demonstrator for a semantic-web approach to these challenges. The software used for energy performance assessment was the City Energy Analyst. Using a quarter in downtown Singapore as an example, the results indicated 70% to 80% residential supplemented by other land use types favours efficient use of district cooling systems and photovoltaic panels. Urban planners may use the results to narrow down the search space of land use type ratios for the selected mixed-use area in Singapore. The use case serves as a pilot demonstrator for a broader research scope, the project Cities Knowledge Graph. To support master planning, the project aims to build an extendable plat-form to integrate more datasets and evaluation software for various urban qualities and domains.
keywords Urban planning; knowledge graph; City Energy Analyst; simulation; energy-driven urban design; urban form
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_117
id caadria2021_117
authors Ikeno, Kazunosuke, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Can a Generative Adversarial Network Remove Thin Clouds in Aerial Photographs? - Toward Improving the Accuracy of Generating Horizontal Building Mask Images for Deep Learning in Urban Planning and Design
doi https://doi.org/10.52842/conf.caadria.2021.2.377
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 377-386
summary Information extracted from aerial photographs is widely used in the fields of urban planning and architecture. An effective method for detecting buildings in aerial photographs is to use deep learning to understand the current state of a target region. However, the building mask images used to train the deep learning model must be manually generated in many cases. To overcome this challenge, a method has been proposed for automatically generating mask images by using textured 3D virtual models with aerial photographs. Some aerial photographs include thin clouds, which degrade image quality. In this research, the thin clouds in these aerial photographs are removed by using a generative adversarial network, which leads to improvements in training accuracy. Therefore, the objective of this research is to propose a method for automatically generating building mask images by using 3D virtual models with textured aerial photographs to enable the removable of thin clouds so that the image can be used for deep learning. A model trained on datasets generated by the proposed method was able to detect buildings in aerial photographs with an accuracy of IoU = 0.651.
keywords Urban planning and design; Deep learning; Generative Adversarial Network (GAN); Semantic segmentation; Mask image
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2021_037
id ecaade2021_037
authors Kikuchi, Takuya, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Automatic Diminished Reality-Based Virtual Demolition Method using Semantic Segmentation and Generative Adversarial Network for Landscape Assessment
doi https://doi.org/10.52842/conf.ecaade.2021.2.529
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 529-538
summary In redevelopment projects in mature cities, it is important to visualize the future landscape. Diminished reality (DR) based methods have been proposed to represent the future landscape after the structures are removed. However, two issues remain to be addressed in previous studies. (1) the user needs to prepare 3D models of the structure to be removed and the background structure to be rendered after removal as preprocessing, and (2) the user needs to specify the structure to be removed in advance. In this study, we propose a DR method that detects the objects to be removed using semantic segmentation and completes the removal area using generative adversarial networks. With this method, virtual removal can be performed without preparing 3D models in advance and without specifying the removal target in advance. A prototype system was used for verification, and it was confirmed that the method can represent the future landscape after removal and can run at an average speed of about 8.75 fps.
keywords landscape visualization; virtual demolition; diminished reality (DR); deep learning; generative adversarial network (GAN); semantic segmentation
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2021_078
id caadria2021_078
authors Li, Chao and Petzold, Frank
year 2021
title Integrating digital design and Additive Manufacturing through BIM-based digital support - A decision support system using Semantic Web and Multi-Criteria Decision Making
doi https://doi.org/10.52842/conf.caadria.2021.1.263
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 263-270
summary Additive Manufacturing in Construction (AMC) envisions a possible alternative for predominantly manual construction with various benefits. In addition to the well-known extrusion-based implementations of AMC, other techniques have been developed to meet various visual and functional requirement. However, the application of Additive Manufacturing (AM) into construction projects has to be carefully evaluated, especially during the early phases of architectural design when important decisions are made. From this point, this work devised an AMC-Oriented Design Decision Support System (DDSS) to identify suitable building components which can be manufactured with specific AM methods. In such a DDSS, knowledge base and decision-making strategy are both critical. To this end, principle of leveraging Semantic Web techniques and Multi-Criteria Decision Making (MCDM) methodologies will be addressed. At the current stage of our research, pre-printed building components using concrete material are considered during the decision support process.
keywords Additive Manufacturing in Construction; BIM; Design Decision Support System; Multi-Criteria Decision Making; Semantic Web
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2021_167
id ecaade2021_167
authors Zhu, Zhelun, Coraglia, Ugo Maria, Simeone, Davide and Fioravanti, Antonio
year 2021
title Spaces Identity Evaluation aNd Assignment - SIENA - A duck typing approach for automatic recognition and semantic enrichment of architectural spaces
doi https://doi.org/10.52842/conf.ecaade.2021.2.341
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 341-350
summary This paper presents the development of SIENA - Space Identity Evaluation aNd Assignment - based on duck typing for automatic recognition and semantic enrichment of the architectural spaces. This method is known in computer science as a form of abductive reasoning and leverages on the observable features of an object in order to establish its recognition. As result, the spatial identity is object-oriented and can be dynamically defined. In this research, the duck typing approach has been achieved with the support of BIM methodology and graph database. The former allows information-based modeling of an architectural project while the latter makes possible the representation of the knowledge along with their relationships. Consequently, this research may have many possible applications, especially as a valid design support tool in the very first design stages. Furthermore, an efficient spatial identity detection could contribute to the development of further human-machine interactions and therefore a possible optimization of the design process.
keywords Semantics; Graph database; Duck typing; Space identification
series eCAADe
email
last changed 2022/06/07 07:57

_id cdrf2021_368
id cdrf2021_368
authors B. Bala Murali Kumar, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo
year 2021
title Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_34
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary The additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_280
id sigradi2021_280
authors Banda, Pablo, García-Alvarado, Rodrigo and Munoz-Sanguinetti, Claudia
year 2021
title Architectural Digital Design for 3D Printing Housing: Search for 3D Printing in Construction Trends for a Design Methodology
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1409–1421
summary This paper proposes the development of a methodology for the digital generation of valid 3D-printed houses designs and fabrication programming, in the search for an emerging architectural language of this technology. The aim is to develop a transparent, generic and variable modeling and management process, based on some parametric patterns for 3D printing, architectural and construction design knowledge. That serves as an outline or insight of what can be designing architectural 3d-printed forms in the Construction 4.0 era. Preliminary results, discussion and further work are presented.
keywords 3D Printed Buildings, Generative Design, Parametric Design, Digital Fabrication, Housing
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_382
id caadria2021_382
authors Heidari, Farahbod, Saleh Tabari, Mohammad Hassan, Mahdavinejad, Mohammadjavad, Werner, Liss C. and Roohabadi, Maryam
year 2021
title Bio-Energy Management from Micro-Algae Bio-Computational Based Reactor
doi https://doi.org/10.52842/conf.caadria.2021.1.401
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 401-410
summary Microalgae are a sustainable source of unique properties with potential for various applications. Biofuel production has led to the use of them as bioreactors on an architectural scale. Most of these efforts cannot manage the output due to the lack of intelligent control and monitoring over environmental micro-scale growth. This research presents the possibility of control and monitoring over the bio-energy retrieved through micro-organisms in bio-reactors, specifically the growth environments computation. To achieve monitoring, three dimensions of the medium culture captured by cameras, and with the advantage of image processing, the picture frames pixel values measured. In this process, we use the Python OpenCV Library as an image processing reference. Finally, a specifically developed algorithm analyses the calculated 3d-matrix. By changing the environmental parameters, control happens by directly recognizing changes in density and outputs. This researchs computational process has proposed a novel approach for controlling particle-based environments to reach the desired functions of microorganisms, This approach can use in a wide range of cases as a method.
keywords Bio-Computation; Monitoring; Image Processing; Pattern Recognition; Multi-Functional Bio-Materials
series CAADRIA
email
last changed 2022/06/07 07:49

_id sigradi2021_130
id sigradi2021_130
authors Hiilesmaa, Laura, Galbes Breda de Lima, Eduardo, Chieppe Carvalho, Leonardo, Wenzel Martins, Gisele and Vizioli, Simone Helena Tanoue
year 2021
title Heritage Education: Computational Design of the Virtual Exhibition at the Cultural and Scientific Divulgation Center of USP
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 605–616
summary During the current pandemic situation, in 2020/2021, there has been an increased need for easier remote access to cultural and heritage sites, especially on users’ smartphones and personal devices. The exhibition from the 40 years anniversary of the Cultural and Scientific Divulgation Center (CDCC) of the University of Sao Paulo (USP) was selected in order to accomplish the fundamental objectives of this study. The transition of its contents to digital media was enabled by three main technologies: 360° panoramic images, used broadly in the virtual tour; close-range photogrammetry for the creation of 3D models of objects, such as the bust of Dante Alighieri; and informative GIFs of the Transparent Woman of Dresden. As a result of the methodology proposed, this paper introduces a link with the virtual tour developed, presenting an important resource to spread a multidisciplinary knowledge about this meaningful built heritage of Sao Carlos (SP).
keywords Fotogrametria, Imagens Panorâmicas 360°, Educaçao Patrimonial, Patrimônios Materiais, Tour Virtual 360°.
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_157
id caadria2021_157
authors Huang, Xiaoran, Kimm, Geoff and Burry, Mark
year 2021
title Exploiting game development environments for responsive urban design by non-programmers - melding real-time ABM pedestrian simulation and form modelling in Unity 3D
doi https://doi.org/10.52842/conf.caadria.2021.2.689
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 689-698
summary Precinct-level pedestrian simulation often requires moderate to high-level modelling skills with a steep learning curve, and is usually non-flexible, time-consuming and exclusive of the broader public community. Confronting these problems, our research investigates a novel and agile workflow to test precinct pedestrian behaviours by melding agent-based simulation (ABM) and responsive real-time form modelling mechanisms within accessible visualisation of city and precinct environments in a game engine, Unity 3D. We designed an agent system prototype of configurable and interoperable nodes that may be placed in an urban modelling scenario. Realtime CSG, a fast polygon-based modelling plugin, is also introduced to our workflow where users can use the evidence observed when running a scenario to quickly adjust the street morphology and buildings in response. In this process, end users are kept in the design loop and may make critical adjustments, whereby a responsive, collective, informed design agenda for our built environments can inform more detailed outcomes of pedestrian behaviour and action and promote more efficient collaborations for both professionals and local communities.
keywords Agent-based pedestrian simulation; responsive modelling; computer-aided urban design; public participation
series CAADRIA
email
last changed 2022/06/07 07:49

_id ecaade2021_036
id ecaade2021_036
authors Kikuchi, Naoki, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2021
title Landscape Visualization by Integrating Augmented Reality and Drones with Occlusion Handling to Link Real and Virtual Worlds - Towards city digital twin realization
doi https://doi.org/10.52842/conf.ecaade.2021.2.521
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 521-528
summary In the field of urban architecture and design, augmented reality (AR)-based landscape visualization is useful for building consensus among stakeholders at the design stage. An integrated AR and drone method can visualize future and past landscapes from an aerial perspective but has to address the problem of occlusion, where a 3D virtual model is displayed in front of the real-world objects. In this study, we propose an AR and drone integrated landscape visualization method to handle occlusion by linking the drone's location information in the real world and the camera in the virtual world. The method uses a 3D model of an existing building, which is part of the city model, to represent the 3D model of the design target as if the target were behind the existing building in the real world. Users can use the perspective of the drone, which flies along a set route, to examine the future landscape with high accuracy, as visualized using AR with occlusion handling.
keywords Digital twin; Occlusion handling; Landscape visualization; Web-based augmented reality (web AR); Drone; Urban design
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
doi https://doi.org/10.52842/conf.caadria.2023.2.231
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2021_220
id caadria2021_220
authors MacDonald, Katie and Schumann, Kyle
year 2021
title Twinned Assemblage - Curating and Distilling Digital Doppelgangers
doi https://doi.org/10.52842/conf.caadria.2021.1.693
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 693-702
summary Recent developments in digital fabrication have made increasingly intelligent use of machine visioning and 3D scanning. These technologies enable ever-higher resolution digital models of physical material, and present opportunities for physical material to gain agency in the design process. Digital design workflows using such technologies require ever-greater computing power as the resolution of digitized models increases, and high-fidelity 3D scanning systems become cost-prohibitive, creating obstacles to widespread use. Twinned assemblage uses consumer-grade photogrammetry software, lowering the cost of equipment required, and presents a series of distillation methods that strategically reduce the fidelity of data digitally describing a physical object. Distillation methods discussed include reducing a mesh to a low-poly geometry, identifying the location and orientation of an object's largest faces, and creating 2D sections, among others. These methods can be designed intentionally to extract or highlight certain qualities in digital models, that in turn inform aggregation strategies generated through computational simulation. This paper presents several examples of such aggregations in a variety of materials, conveying benefits and challenges of the process. Such methods present opportunities for granting agency to physical materials in the design process, and for the democratized use of digitizing technologies.
keywords Authorship; Digitizing; Material Agency; Digital Design; Democratized Technology
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia21_502
id acadia21_502
authors Mytcul, Anna
year 2021
title ARchitect
doi https://doi.org/10.52842/conf.acadia.2021.502
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 502-511.
summary This research investigates gaming as a framework for design democratization in architecture, where the end user is the key decisionmaker in the design process. ARchitect is a multisensory game that promotes and explores the educational aspects of learning games and their influence on end user engagement with house co-design. This combinatorial game relies on an augmented reality (AR) application accessible through a smartphone, serving as a low-threshold tool for converting architectural drawings into 3D models in real time and using AR technology for design evaluation.

By allowing for learning through playing, ARchitect provides alternative ways of gaining knowledge about design and architecture and empowers non-experts to take active and informed positions in shaping their future urban environments on a micro-scale, rethinking conventional market relations and exploring emerging personal and public values. The ARchitect game challenges conventional participatory design where an architect plays an essential role in facilitation of the design process and translation of end users’ design proposals. In contrast, the proposed game system allows non-architect players to autonomously produce and access design solutions through embedded computational simulation by an AR application, thus giving an equal chance to non-professionals to express their design visions and become aware of potential implications of their ideas. By providing free access to the game contents through the ARchitect platform and a playful user experience by which design principles can be learned, this game will inspire the general public to engage in conversation about home design, eventually spreading architectural literacy to less-privileged communities.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_178
id ecaade2021_178
authors Nicholas, Paul, Chiujdea, Ruxandra Stefania, Sonne, Konrad and Scaffidi, Antonio
year 2021
title Design and Fabrication Methodologies for Repurposing End of Life Metal via Robotic Incremental Sheet Metal Forming
doi https://doi.org/10.52842/conf.ecaade.2021.2.171
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 171-180
summary This paper investigates an integrative approach to robotic incremental sheet metal forming (RISF), which connects the registration of variable material properties and geometries to the re-forming of pre-made components beyond their initial formulations. Re-using rather than recycling metals can save the significant energy costs that come with having to melt, purify and re-manufacture products, as well as saving the costs of the new object it replaces. In this paper, we describe a workflow that connects 3d scanning, design automation and fabrication. The method goes beyond state of the art for RISF by challenging the assumption of starting from a flat unused sheet of metal, opening up the potential of RISF for material reuse. Our approach is demonstrated through the fabrication of a series of bench seating elements from oil drum geometries, however is generalisable to other input materials and output geometries. 3d scanning is used to register varying geometric features such as rolled beads, irregularities such as dents and holes, and material properties such as corrosion.
keywords robotic fabrication; re-use; upcycling; incremental sheet metal forming
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2021_227
id sigradi2021_227
authors Nóbrega, Thiers Freire, Nóbrega, Carlos Augusto Moreira da and Passaro, Andrés Martin
year 2021
title Experimental Paste Extrusion Mechanism for 3D Printing
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1163–1175
summary This communication informs about the development of a low-cost clay extrusion mechanism, adapted to a 3d printer, which will be used to support the study and practice of architecture in the context of a research laboratory. We believe that this research is a contribution to the 3D printing community and architectural academic environment. We understand that this project makes a valuable contribution to the academic environment by promoting the production of knowledge in the “do it yourself” way by allowing the acquisition of “know how” in a procedural way. There is an effort in making our extruder mechanism replicable by whoever is interested in understanding how the system works.
keywords Fabricaçao Digital, Impressao 3D, Baixo custo, Pastoso, Aprendizado
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_161
id sigradi2021_161
authors Silva de Almeida, Juliane and Schneider de Castro, Márcio
year 2021
title Applying Geogebra in Descriptive Geometry Online Teaching to Model Fundamental Concepts
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 389–400
summary Gamification tools are becoming increasingly common, especially due to the COVID-19 pandemic, as it has been necessary to adapt subjects for distance learning. Gamification tools include software classified as digital interactive technologies for teaching. Hence, it propitiates the student to learn through software interaction. One renowned gamification tool available in calculus and geometry is Geogebra® with an attractive and interactive graphic interface. Owing to these features, this article will present the authors’ didactic materials developed in Geogebra®. They consist of 3D dynamic models, which illustrate fundamental concepts of descriptive geometry. Thus, the models aim to support spatial vision acquisition in the teaching-learning process in descriptive geometry courses. This course is part of the undergrad engineering curricula at the Universidade Federal de Santa Catarina, Brazil. After testing the new materials, the students classified the 3D dynamic models of Geogebra® as useful to comprehend the content and exercises.
keywords Geogebra, Descriptive Geometry, 3d Representation, Dynamic Models, Online Teaching Geometry, Adjacent View
series SIGraDi
email
last changed 2022/05/23 12:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_35367 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002