CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 607

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_285
id caadria2021_285
authors Gawell, Ewelina
year 2021
title Optimal design of wooden pavilion gridshell structures in the context of architectural and structural collaboration
doi https://doi.org/10.52842/conf.caadria.2021.1.473
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 473-482
summary In the article two interacting aspects of collaborative design are described: shaping of the form and the rational use of materials. Form shaping will be analyzed on the basis of pavilions. The material aspect of this paper is concerned with the use of wood in contemporary construction. The first goal is to analyze the selected technical parameters related to the use of wood in the optimal shaping of gridshell structures in architecture. The second goal is to identify new opportunities for architectural and structural engineering cooperation in the context of generative digital tools. The possibility of creating new plugins for the existing generative modeling programs to improve the quality of collaboration will also be discussed. The paper is concerned with elementary research. I was able to achieve the set goals by means of theoretical analyzes based on the known literature as well as the analysis of the created objects and the accompanying research. The background for the work is a description of the selected trends of using natural wood as load-bearing elements in contemporary architecture and case studies of the selected objects that express the idea of form and material eco-efficiency.
keywords wooden structures; structural detail; bionic models
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia21_502
id acadia21_502
authors Mytcul, Anna
year 2021
title ARchitect
doi https://doi.org/10.52842/conf.acadia.2021.502
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 502-511.
summary This research investigates gaming as a framework for design democratization in architecture, where the end user is the key decisionmaker in the design process. ARchitect is a multisensory game that promotes and explores the educational aspects of learning games and their influence on end user engagement with house co-design. This combinatorial game relies on an augmented reality (AR) application accessible through a smartphone, serving as a low-threshold tool for converting architectural drawings into 3D models in real time and using AR technology for design evaluation.

By allowing for learning through playing, ARchitect provides alternative ways of gaining knowledge about design and architecture and empowers non-experts to take active and informed positions in shaping their future urban environments on a micro-scale, rethinking conventional market relations and exploring emerging personal and public values. The ARchitect game challenges conventional participatory design where an architect plays an essential role in facilitation of the design process and translation of end users’ design proposals. In contrast, the proposed game system allows non-architect players to autonomously produce and access design solutions through embedded computational simulation by an AR application, thus giving an equal chance to non-professionals to express their design visions and become aware of potential implications of their ideas. By providing free access to the game contents through the ARchitect platform and a playful user experience by which design principles can be learned, this game will inspire the general public to engage in conversation about home design, eventually spreading architectural literacy to less-privileged communities.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_362
id acadia21_362
authors Bruscia, Nicholas
year 2021
title Surface Disclination Topology in Self-Reactive Shell Structures
doi https://doi.org/10.52842/conf.acadia.2021.362
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 362-371.
summary This paper discusses recent developments on the geometric construction and fabrication techniques associated with large-scale surface disclinations. The basic concept of disclinations recognizes the role of “defects” in the composition of materials, the strategic placement of which shapes the material by inducing curvature from initially planar elements. By acknowledging the relationship between geometry and topology that governs disclination based form-finding and material prototyping, this work consciously explores its potential at the architectural scale. Basic geometric figures and their topological transformations are documented in the context of digital modeling and simulation, fabrication, and a specific material palette. Specifically, this work builds on recent efforts by focusing on three particular areas of investigation; a) enhancing the stability of surface disclinations with a synthetic fibrous layer, b) aggregation via periodic tilings, and c) harnessing snap-through buckling to increase bending stiffness in thin surfaces.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac202119201
id ijac202119201
authors Gumuskaya, Gizem
year 2021
title Multimaterial bioprinting—minus the printer: Synthetic bacterial patterning with UV-responsive genetic circuits
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 121–141
summary In this paper, we argue that synthetic biology can help us employ living systems’ unique capacity for self-construction and biomaterial production toward developing novel architectural fabrication paradigms, in which both the raw material production and its refinement into a target structure can be merged into a single computational process embedded in the living structure itself. To demonstrate, here we introduce bioPheme, a novel biofabrication method for engineering bacteria to build biomaterial(s) of designer’s choice into arbitrary 2D geometries specified via transient UV tracing. To this end, we present the design, construction, and testing of the enabling synthetic DNA circuit, which, once inserted into a bacterial colony, allows the bacteria to execute spatial computation by interacting with one another based on the if-then rules encoded in this circuit. At the heart of this genetic circuit is a pair of UV sensor – actuator, and a pair of cell-to-cell signal transmitter – receptor modules, created with genes extracted from the virus ? Phage and marine bacterium Vibrio fischeri, respectively. These modules are wired together to help designers engineer bacteria to build macro-scale structures with seamlessly integrated biomaterials, thereby bridge the molecular and architectural scales. In this way, a bacterial lawn can be programmed to produce different objects with complementary biomaterial compositions, such as a biomineralized superstructure and an elastic tissue filling in-between. In summary, this paper focuses on how scientists’ increasing ability to harness the innate computational capacity of living cells can help designers create self-constructing structures for architectural biofabrication. Through the discussions in this paper, we aim to initiate a shift in today’s biodesign practices toward a greater appreciation and adoption of bottom-up governance of living structures. We are confident that such a paradigm shift will allow for more efficient and sustainable biofabrication systems in the 4th industrial revolution and beyond.
keywords Synthetic biology, architecture, optogenetics, design computation, genetic circuits, biofabrication, synthetic morphogenesis, computational fabrication, architectural fabrication, biodesign
series journal
email
last changed 2024/04/17 14:29

_id acadia21_58
id acadia21_58
authors Karsan, Zain
year 2021
title TinyZ
doi https://doi.org/10.52842/conf.acadia.2021.058
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 58-67.
summary The circumstances of the pandemic have resulted in the closure of workshops and Fab Labs and put physical making on hold for fabrication-based design courses. However, with digital fabrication having become a crucial component of design education, involving the critical transition from design ideas represented digitally to being realized physically, alternative approaches needed to be found. Remote making can be enabled by the potentials of small-scale modular machines, which due to their low cost, are easily distributable and can be shipped to each student in a design studio. The use of at-home fabrication offers new possibilities for project-adaptive prototyping tools.

Desktop scaled fabrication tools designed to reach a distributed audience abound in industry, academia, and amongst DIY-ers. Drawing from these precedents, a desktop milling machine called the TinyZ was developed to support digital fabrication in an architectural studio held at MIT in the Spring of 2021. The machine was designed to be an easily reconfigurable rapid prototyping tool intended to adapt to evolving design processes.

The TinyZ Kit introduced students to the basics of machine building, electronics, and computer numerically controlled (CNC) programming. The outcome of the studio showed the potential for different home labs to develop specializations and to collaborate by out-sourcing, offering a way for students to work together remotely. Finally, the work of the studio demonstrated that new material processes developed remotely could return to fab labs and extend the capacities of shared maker spaces.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v3_189
id acadia23_v3_189
authors Leung, Pok Yin Victor; Huang, Yijiang
year 2023
title Task and Motion Planning for Robotic Assembly
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary When programming robotic assembly processes, it is often necessary to create a sequential list of actions. Some actions are robotic motions (requiring motion trajectory), and some are for controlling external equipment, such as grippers and fastening tools. The act of planning these actions and motion trajectories is called Task Planning and Motion Planning. Existing literature in robotics explored many different planning algorithms for planning a single trajectory to planning a complete sequence of tasks where continuity is maintained [Garrett et al, 2021]. Many application literature focused on the TAMP for service robots, medical robots, and self-driving cars, while there are few examples for architectural applications. For digital fabrication and automated construction, the planning method has to be adapted to the needs of architectural assemblies and the scale of construction [Leung et al, 2021]. Some of the unique challenges are the highly bespoke workpiece and assembly geometry, the large workpiece (e.g., long beams), and a dense collision environment. This three-day hybrid workshop addressed the needs of the architectural robotics community to use industrial robotic arms to assemble highly bespoke objects. The objects do not have any repetitive parts or assembly targets. The workshop leaders shared their experiences using industrial robots to construct large-scale timber structures. One of the most useful techniques is the recently published “Flowchart Planning Method,” where task sequence is planned using a flowchart, and motion trajectories are planned in a second pass [Huang et al, 2021].
series ACADIA
type workshop
last changed 2024/04/17 14:00

_id ijac202119103
id ijac202119103
authors Liu, Jingyang; Yi-Chin Lee, and Daniel Cardoso Llach
year 2021
title Computational design and fabrication of highly customizable architectural space frames: Making a flat-cut Weaire-Phelan structure
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 37–49
summary This paper documents a computational approach to the design, fabrication, and assembly of customizable space structures built entirely out of flat-cut interlocking elements without the need of nodes, fasteners, cement, or glue. Following a Research by Design (RbD) methodology, we establish a framework comprising geometric and parametric modeling, structural analysis, and digital fabrication stages to examine the following research question: how might the modularity of a construction kit be combined with the plasticity of parametric descriptions to facilitate the design and fabrication of flat-cut space structures? We find that an adaptive joint design that resolves local deformations at the node and element levels can facilitate the construction of flat-cut space structures by making modular components responsive to local geometric, material, and mechanical demands. The research centers on the design and construction of an architecture-scale installation based on the Weaire-Phelan structure—an aperiodic space-filling geometric structure that approximates the geometry of foam—entirely out of flat-cut interlocking elements. Documenting the process in technical detail, as well as some limitations, the paper contributes to recent efforts to develop digital materials suitable for architectural applications. In addition, it contributes to extend the formal and architectural possibilities of flat-cut space structure design by facilitating “bottom-up” design explorations in concert with the structure’s tectonic resolution.
keywords Computational design, generative fabrication, construction kit
series journal
email
last changed 2021/06/03 23:29

_id ecaade2022_52
id ecaade2022_52
authors Nejur, Andrei and Balaban, Thomas
year 2022
title The A(fin)ne Pavilion - Pandemic adapted architectural studio fabrication
doi https://doi.org/10.52842/conf.ecaade.2022.2.507
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 507–516
summary This paper presents the didactical and research process of a pandemic-adapted digital fabrication, material-driven research master studio held at University of Montreal School of Architecture in early 2021 that concluded with the construction of a large-scale research pavilion assembled by the students with hand tools only. The paper focuses on the structure of the studio and how the research was re-oriented to permit material investigations using limited physical interaction between the participants, intermittent access to on-campus fabrication facilities, limited financial resources, and a cohort of students with near-zero computational design experience.
keywords DIY, Education, Pavilion, Construction, Folding, Pandemic, Digital Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia21_308
id acadia21_308
authors Rossi, Gabriella; Chiujdea, Ruxandra; Colmo, Claudia; El Alami, Chada; Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette
year 2021
title A Material Monitoring Framework
doi https://doi.org/10.52842/conf.acadia.2021.308
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 308-317.
summary Through 3d printing, cellulose-based biopolymers undergo a two-staged hybrid fabrication process, where initial rapid forming is followed by a slower secondary stage of curing. During this curing large quantities of water are evaporated from the material which results in anisotropic deformations. In order to harness the potential of 3d printing biopolymers for architectural applications, it is necessary to understand this extended timeline of material activity and its implications on critical architectural factors related to overall element shrinkage, positional change of joints, and overall assembly tolerance. This paper presents a flexible multi-modal sensing framework for the understanding of complex material behavior of 3d printed cellulose biopolymers during their transient curing process.

We report on the building of a Sensor Rig, that interfaces multiple aspects of the curing of our cellulose-slurry print experiments, using a mix of image-based, marker-based, and pin-based protocols for data collection. Our method uses timestamps as a common parameter to interface various modes of curing monitoring through multi-dimensional time slices. In this way, we are able to uncover underlying correlations and affects between the different phenomena occuring during curing. We report on the developed data pipelines enabling the Monitoring Framework and its associated software and hardware implementation. Through graphical Exploratory Data Analysis (EDA) of 3 print experiments, we demonstrate that geometry is the main driver for behavior control. This finding is key to future architectural-scale explorations.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_194
id ecaade2021_194
authors Scott, Jane, Gaston, Elizabeth and Agraviador, Armand
year 2021
title Configured Knitting - Grafting as an assembly process for knitted architecture
doi https://doi.org/10.52842/conf.ecaade.2021.2.473
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 473-482
summary There is a growing interest in knit as a material system for architectural research in a workflow that integrates computation and digital fabrication in the design and specification of highly engineered fabrics. However, the dimensional limitations of industrial machines mean that large scale work may require assembly from multiple pieces. Reconfiguring knitted fabric by joining fabric panels disrupts the performance of the material, challenging the computational model when fabric characteristics are transformed at the seams.The aim of this research is to evaluate the potential for grafting, a traditional joining method for knitted fabric, as an assembly technique for architectural scale knitted prototypes. The paper presents an overview of knitted loop geometry focusing on the impact of loop construction in textile joins. The paper presents experimental research conducted using unconventional off-machine techniques at two scales, demonstrating how grafting can be used to assemble 3D structures without compromising the integrity of the material. Findings highlight the significance of this technique and suggest how the work could translate to digital fabrication.
keywords Knit; Grafting; Computational Form Generation; Textile Design
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2021_286
id cdrf2021_286
authors Yimeng Wei, Areti Markopoulou, Yuanshuang Zhu,Eduardo Chamorro Martin, and Nikol Kirova
year 2021
title Additive Manufacture of Cellulose Based Bio-Material on Architectural Scale
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_27
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary There are severe environmental and ecological issues once we evaluate the architecture industry with LCA (Life Cycle Assessment), such as emission of CO2 caused by necessary high temperature for producing cement and significant amounts of Construction Demolition Waste (CDW) in deteriorated and obsolete buildings. One of the ways to solve these problems is Bio-Material. CELLULOSE and CHITON is the 1st and 2nd abundant substance in nature (Duro-Royo, J.: Aguahoja_ProgrammableWater-based Biocomposites for Digital Design and Fabrication across Scales. MIT, pp. 1–3 (2019)), which means significantly potential for architectural dimension production. Meanwhile, renewability and biodegradability make it more conducive to the current problem of construction pollution. The purpose of this study is to explore Cellulose Based Biomaterial and bring it into architectural scale additive manufacture that engages with performance in the material development, with respect to time of solidification and control of shrinkage, as well as offering mechanical strength. At present, the experiments have proved the possibility of developing a cellulose-chitosan- based composite into 3D-Printing Construction Material (Sanandiya, N.D., Vijay, Y., Dimopoulou, M., Dritsas, S., Fernandez, J.G.: Large-scale additive manufacturing with bioinspired cellulosic materials. Sci. Rep. 8(1), 1–5 (2018)). Moreover, The research shows that the characteristics (Such as waterproof, bending, compression, tensile, transparency) of the composite can be enhanced by different additives (such as xanthan gum, paper fiber, flour), which means it can be customized into various architectural components based on Performance Directional Optimization. This solution has a positive effect on environmental impact reduction and is of great significance in putting the architectural construction industry into a more environment-friendly and smart state.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_85
id sigradi2021_85
authors Naboni, Roberto and Marino, Dario
year 2021
title Wedged Kerfing. Design and Fabrication Experiments in Programmed Wood Bending
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1283–1294
summary Wood as a construction material gained interest in the last decade because of its low carbon footprint and the continuous research of new design possibilities opened using computational and robotic means. The shaping of timber into non-standard shapes is challenging and industrially demanding. This paper showcases a method to computationally control the formation of curved wood elements suitable for construction purposes. The aim is to achieve wood bending and twisting through a technique that combines advanced kerfing with a controlled insertion of wedges. The research has been conducted through material testing, computational developments, and robotic prototyping to evaluate design control, fabrication accuracy, and structural potential for architectural applications.
keywords Robotic timber construction, wood architecture, performance-driven design, customized curved timber elements
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_406
id caadria2021_406
authors Sun, Maoran, Sun, Pengcheng, Dong, Yuebin and Lopez, Jose Luis Garcia del Castillo
year 2021
title Mass Production - Towards Multidimensional,Real-time Feedback in Early Stages of Urban Design Processes
doi https://doi.org/10.52842/conf.caadria.2021.2.649
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 649-658
summary Urban design, especially in its early stages, focuses mainly on massing studies rather than architectural detail or engineering. Traditional urban design workflows involve a mix of sketching and modeling. However, the back and forth between the sketching-modeling loop is typically fairly time-consuming, resulting in a reduced capacity to iterate efficiently over design concepts, even in their digital form. In this paper, we present a workflow for producing digital massing tests from hand-drawn sketches. The goal of Mass Production is to help quick iteration on volumetric design enhanced by real-time feedback on quantitative and qualitative parameters of the model, thus helping designers make better informed decisions on early stages of urban design processes. The architecture of the proposed workflow consists of three main elements: a tangible user interface (UI) for designer input, a real-time dashboard of diagrams and models for massing analysis, and an augmented reality (AR) environment for enhanced feedback on design form and shaping. In this research, Mass Production is tested in different design scenarios, a discussion about the future and its impact is presented, including emerging technology while keeping traditional workflows.
keywords Urban Design; Massing Study; Augmented Reality
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2021_28
id sigradi2021_28
authors Atsumi, Kei, Hanazato, Toshihiro and Kato, Osamu
year 2021
title The Assembly and Fabrication of Double Curved Panel Structure Using Japanese wood Joints created by Desktop 3D Printers
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1245–1255
summary This research presents a new direction for freeform structure assembly and fabrication through the collaboration of 3D printing technology and Japanese wood joining technology. Full-scale, self-build prototyping is demonstrated without glue or metal fittings. Rather than relying on digital fabrication machines to match the architectural scale, this study utilizes the Fused Filament Fabrication (FFF) with desktop 3D printers, which is the most widespread and inexpensive printing technology. By incorporating the perspectives of wood joinery and compact 3D printers, this study promotes a drastic change in 3D printed architectural production from a massive structure-oriented system to a module-oriented system. The project demonstrates how artisanal knowledge integrates with 3D printing architectural production by reconfiguring joint geometry, parametric modeling, fabrication, and assembly processes. We discuss our research process and final achievements, and we provide new ideas for architectural production using digital fabrication.
keywords Digital fabrication, Assembly, Japanese wood joints, 3D printing, Double- curved panel structure
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_329
id caadria2021_329
authors Breseghello, Luca, Sanin, Sandro and Naboni, Roberto
year 2021
title Toolpath Simulation,Design and Manipulation in Robotic 3D Concrete Printing
doi https://doi.org/10.52842/conf.caadria.2021.1.623
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632
summary Digital fabrication is blurring the boundaries between design, manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic. manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic."
keywords 3D Concrete Printing; Robotic Fabrication; Additive Manufacturing; Toolpath Simulation; Toolpath Manipulation
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_276478 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002