CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id acadia21_410
id acadia21_410
authors Meibodi, Mania Aghaei; Craney, Ryan; McGee, Wes
year 2021
title Robotic Pellet Extrusion: 3D Printing and Integral Computational Design
doi https://doi.org/10.52842/conf.acadia.2021.410
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 410-419.
summary 3D printing offers significant geometric freedom and allows the fabrication of integral parts. This research showcases how robotic fused deposition modeling (FDM) enables the prefabrication of large-scale, lightweight, and ready-to-cast freeform formwork to minimize material waste, labor, and errors in the construction process while increasing the speed of production and economic viability of casting non-standard concrete elements. This is achieved through the development of a digital design-to-production workflow for concrete formwork. All functions that are needed in the final product, an integrally insulated steel-reinforced concrete wall, and the process for a successful cast, are fully integrated into the formwork system. A parametric model for integrated structural ribbing is developed and verified using finite element analysis. A case study is presented which showcases the fully integrated system in the production of a 2.4 m tall x 2.0 m curved concrete wall. This research demonstrates the potential for large-scale additive manufacturing to enable the efficient production of non-standard concrete formwork.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_199
id sigradi2021_199
authors Sencan, Inanç, Alaçam, Sema and Sener, Sinan Mert
year 2021
title Designing Printers that Print onto Spherical Geometries: A Lo-Fi Prototyping Case
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 559–570
summary This study presents a novel 3D printing mechanism specifically designed to print on spherical surfaces. Fused Deposition Modeling (FDM) is adopted. The initial prototypes of the designed 3D printer have been tested with a specific focus on rotational movement mechanism and developing G-code solutions. The results of the low fidelity prototyping process are discussed in the context of stability of the system, usability of the proposed tool, sufficiency of step motor torque, distance between nozzle and the printing surface, producibility with reasonable budget, and flexibility. The distinctive feature of this study, unlike robot-aided additive manufacturing applications, is that it can be achieved with a low budget. The study is expected to be useful for designers who are interested in designing bespoke additive manufacturing solutions for double-curved and spherical geometries.
keywords Additive manifacturing, Tool design, Direct-to-shape, Complex geometries
series other
type normal paper
email
last changed 2022/06/16 10:00

_id sigradi2021_12
id sigradi2021_12
authors Guillen Salas, Juan Carlos, Furtado Silva, Neander and Miranda Esper Kallas, Luana
year 2021
title BIO-FADEN 2.0 Pavilion: Experimental Study of Algorithmic-Generative Design and Digital Fabrication with 3D Printing of a Bionic Pavilion Prototype in the Midwest Region of Brazil
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1211–1222
summary This research has as main objective to determine the possibilities and limitations of digital design and digital fabrication by 3D printing of a prototype of bionic pavilion with non-Euclidean geometric shapes in reduced size inspired by fruits present in the MidWest Region of Brazil. The work was structured in 3 stages: Rationale, Materials and Logistic, and Experimentation. The Rationale consisted of a literature review on the concepts of: bionics, generative-algorithmic design, digital fabrication, 3D printing and prototyping. The Materials and Logistics stage consisted of the presentation and classification into categories of materials and the logistics that were usedTthe experiment consisted of 4 phases: Graphic code and 3D digital modeling of the bionic pavilion; operationalization of digital fabrication; selection of 3D printing digital fabrication technology and; digital fabrication by 3D printing. The main result of the research is that digital technologies - rhinoceros 5.0 software, grasshopper software - allow to design a prototype of a pavilion of complex shape or of small size inspired by natural structures.
keywords Biônica, Desenho Generativo, Impressao 3D, Fabricaçao Digital, Envoltória Arquitetônica
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_28
id sigradi2021_28
authors Atsumi, Kei, Hanazato, Toshihiro and Kato, Osamu
year 2021
title The Assembly and Fabrication of Double Curved Panel Structure Using Japanese wood Joints created by Desktop 3D Printers
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1245–1255
summary This research presents a new direction for freeform structure assembly and fabrication through the collaboration of 3D printing technology and Japanese wood joining technology. Full-scale, self-build prototyping is demonstrated without glue or metal fittings. Rather than relying on digital fabrication machines to match the architectural scale, this study utilizes the Fused Filament Fabrication (FFF) with desktop 3D printers, which is the most widespread and inexpensive printing technology. By incorporating the perspectives of wood joinery and compact 3D printers, this study promotes a drastic change in 3D printed architectural production from a massive structure-oriented system to a module-oriented system. The project demonstrates how artisanal knowledge integrates with 3D printing architectural production by reconfiguring joint geometry, parametric modeling, fabrication, and assembly processes. We discuss our research process and final achievements, and we provide new ideas for architectural production using digital fabrication.
keywords Digital fabrication, Assembly, Japanese wood joints, 3D printing, Double- curved panel structure
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac202119308
id ijac202119308
authors Dinçer, Sevde Gülizar; Yazar, Tugrul
year 2021
title A comparative analysis of the digital re-constructions of muqarnas systems: The case study of Sultanhani muqarnas in Central Anatolia
source International Journal of Architectural Computing 2021, Vol. 19 - no. 3, 360–385
summary This paper presents a comparative case study on the digital modeling workflows of a particular muqarnas system. After the literature review and the definition of the context, several digital modeling workflows were described as element-based, tessellation-based and block-based workflows by using computer-aided design and parametric modeling software. As the case study of this research, these workflows were tested on a muqarnas design located at the Sultanhani Caravanserai in Central Anatolia. Then, workflows were compared according to three qualities: analytical, generative, and performative. The outcomes of element-based workflow has more analytical solutions for the study, where tessellation-based workflow has more generative potential and block-based workflow is more performative.
keywords Anatolian Seljuk muqarnas, digital modeling, parametric modeling, architectural geometry, Sultanhani Caravanserai
series journal
email
last changed 2024/04/17 14:29

_id sigradi2021_77
id sigradi2021_77
authors Gaete, Rocío and Rozas, Sebastián
year 2021
title From the Vertical to the Horizontal: 3D Printing Without the Requirement of Formwork
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1151–1162
summary The objective of this article is to develop a methodology to print self-supporting, synclastic and anticlastic double curved surfaces tending to the horizontal from the vertical without requiring formwork. To achieve this goal the following was studied, fist place, the definition, the stresses and behaviors of double curved surfaces. Second place, he performance and applications of 3D printing in the construction area, in three companies of this field. From the bibliographic review, the variables are identified to propose an algorithm to print synclastic and anticlastic surfaces in 3d. Finally, the feasibility of the method to print these types of surfaces in 3d was proven by printing four prototypes which confirmed the proper operation of the algorithm, along with showing aspects to improve at the time of printing.
keywords Impresión 3D, Manufactura aditiva, cordón de impresión, anticlástica, sinclástica.
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_120
id sigradi2021_120
authors Nascimento, Bruna Costacurta and Moreira, Lorena Claudia de Souza
year 2021
title Augmented Reality and Historical Sites: A Systematic Literature Review
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 685–697
summary The combination of Augmented Reality (AR) technology and the preservation of historical heritage can promote advances in management, maintenance, and documentation of objects and historical sites. The importance of this integration is that digitalizing these historical heritage assets is a worldwide trend because it is the other way of storing information and allowing access and interaction with the public. This article presents a Systematic Literature Review (SLR), and it aims to identify and analyze existing studies on AR applications used in visualizing historical heritage. A methodological procedure was adopted involving the use of protocols and documents for conducting the SLR. The application areas, specific activities, modeling programs, AR programs, tracking techniques, and visualization devices were identified. Results present which programs, visualization devices and tracking techniques are highlighted in the studies. AR applications used in the sample aim for memory recovery, preservation, and interaction with the historical-cultural heritage.
keywords Realidade aumentada, patrimônio urbano, sítio histórico, centro histórico, patrimônio cultural.
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_043
id caadria2021_043
authors Ng, Provides
year 2021
title 21E8: Coupling Generative Adversarial Neural Networks (GANS) with Blockchain Applications in Building Information Modelling (BIM) Systems
doi https://doi.org/10.52842/conf.caadria.2021.2.111
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 111-120
summary The ability of GANs to synthesize large sets of data is ideal for coupling with BIM to formulate a multi-access system that enables users to search and browse through a spectrum of articulated options, all personalised to design specificity - an 'Architecture Machine'. Nonetheless, due to challenges in proprietary incompatibility, BIM systems currently lack a secured yet transparent way of freely integrating with crowdsourced efforts. This research proposes to employ blockchain as a means to couple GANs and BIM, with e8 networking topology to facilitate communication and distribution. It consists of a literature review and a design research that proposes a tech stack design and UML (unified modeling language) use cases, and presents preliminary design results obtained using GANs and e8.
keywords 21e8; GANs; Blockchain; BIM; Architecture Machine
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_213
id caadria2021_213
authors Oghazian, Farzaneh and Vazquez, Elena
year 2021
title A Multi-Scale Workflow for Designing with New Materials in Architecture: Case Studies across Materials and Scales - Case studies across materials and scales
doi https://doi.org/10.52842/conf.caadria.2021.1.533
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 533-542
summary In this paper, we present a workflow developed for designing with and scaling-up new materials in architecture through an iterative cycle of materialization and testing. The framework establishes a connection between design requirements and form, taking advantage of different scales in new materials known as micro, meso, and macroscale in the process of design/manufacture. Different scales when dealing with material systems-especially in those that possess some level of uncertainty in their behavior from the formation process-make it challenging to deal with the different material variables controlled at each scale. This paper presents a brief review of existing design workflows centered on material properties. We then discuss case studies and argue for a multi-scale approach for design. Finally, we present the workflow. By implementing the workflow on two case studies, we answer how we can include material scales and their embedded properties as the central part of the design/manufacture process to aid in implementing new materials in architecture. The case studies are a responsive skin system and a free-standing tensile structure incorporating 3D printed wood filament and knitted yarn as the primary material.
keywords material computation; material-based design; wood 3D printing; knitting; multi-scale workflow
series CAADRIA
email
last changed 2022/06/07 07:58

_id sigradi2021_280
id sigradi2021_280
authors Banda, Pablo, García-Alvarado, Rodrigo and Munoz-Sanguinetti, Claudia
year 2021
title Architectural Digital Design for 3D Printing Housing: Search for 3D Printing in Construction Trends for a Design Methodology
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1409–1421
summary This paper proposes the development of a methodology for the digital generation of valid 3D-printed houses designs and fabrication programming, in the search for an emerging architectural language of this technology. The aim is to develop a transparent, generic and variable modeling and management process, based on some parametric patterns for 3D printing, architectural and construction design knowledge. That serves as an outline or insight of what can be designing architectural 3d-printed forms in the Construction 4.0 era. Preliminary results, discussion and further work are presented.
keywords 3D Printed Buildings, Generative Design, Parametric Design, Digital Fabrication, Housing
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2023_395
id caadria2023_395
authors Luo, Jiaxiang, Mastrokalou, Efthymia, Aldaboos, Sarah and Aldabous, Rahaf
year 2023
title Research on the Exploration of Sprayed Clay Material and Modeling System
doi https://doi.org/10.52842/conf.caadria.2023.2.231
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 231–240
summary As a traditional building material, clay has been used by humans for a long time. From early civilisations, to the modern dependence on new technologies, the craft of clay making is commonly linked with the use of moulds, handmade creations, ceramic extruders, etc. (Schmandt and Besserat, 1977). Clay in the form of bricks is one of the oldest building materials known (Fernandes et al, 2010). This research expands the possibilities offered by standardised bricks by testing types of clay, forms, shapes, porosity, and structural methods. The traditional way of working with clay relies on human craftsmanship and is based on the use of semi-solid clay (Fernandes et al., 2010). However, there is little research on the use of clay slurry. With the rise of 3D printing systems in recent years, research and development has been emerging on using clay as a 3D printing filament (Gürsoy, 2018). Researchers have discovered that in order for 3D-printed clay slurry to solidify quickly to support the weight of the added layers during printing, curing agents such as lime, coal ash, cement, etc. have to be added to the clay slurry. After adding these substances, clay is difficult to be reused and can have a negative effect on the environment (Chen et al., 2021). In this study, a unique method for manufacturing clay elements of intricate geometries is proposed with the help of an internal skeleton that can be continuously reused. The study introduces the process of applying clay on a special structure through spraying and showcases how this method creates various opportunities for customisation of production.
keywords Spray clay, Substructure, 3D printing, Modelling system, Reusable
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2021_067
id caadria2021_067
authors Michopoulou, Sofia, Giesecke, Rena, Ward Van den Bulcke, Jonas, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Robotic Color Grading for Glass - Additive Manufacturing of Heterogeneous Color and Transparency
doi https://doi.org/10.52842/conf.caadria.2021.1.563
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 563-572
summary This paper presents a new additive manufacturing method for color grading of glass. Color-graded elements, ranging from product design to architectural scale, could filter light and view in a novel way through locally differentiated color and opacity, and produce color effects in space. Existing methods for manufacturing multi-colored glass are either not economic for building due to labor intensity, limited to surface applications or small scale objects made of resins or plastics. To allow for automated color grading of glass in two-and-a-half and three dimensions we propose a robotic multi-channel process. The multi-channel tool mounted on a Universal Robot consists of four compartments, containing red, yellow, blue and transparent glass granules. Colors can be mixed on the fly by implementing varying flow rate ratios along the print path. Loose granules are fused in a kiln at high temperature into color-graded glass elements. The goal of this research is to lay the basis for color-graded elements of larger size and volume with higher pattern differentiation for functional and aesthetic purposes.
keywords color grading; robotic fabrication; multi-channel printing; glass
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2021_091
id ascaad2021_091
authors Taouai, Abdelmounem; Tomas Dorta
year 2021
title From Immersive to Physical Sketches: A New 3D Representation Mode During Ideation
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 253-263
summary This paper presents a new representation mode during ideation based on the use of immersive 3D sketches and their digital fabrication. This work explores freehand immersive 3D sketches of design objects printed at real scale. Freehand 3D vectors were optimized thanks to parametric geometries generated for 3D printing. Our approach aims to take advantage of real-scale immersive 3D sketches, while enriching the 3D perception of proportions and shapes by 3D printing the physical sketches. 3D printing usually requires high-level of 3D modeling skills and this can be challenging during ideation. This technique will allow to reduce the steps going from: 2D sketches – 3D modeling – fabrication to 3D sketches – 3D physical sketches. The hybridization of immersive life-size sketching and 3D printed life-sized sketches, could positively impact ideation by allowing a better grasp of the 3D shapes’ scales and proportions.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_008
id caadria2021_008
authors Chung, Minyoung and Lee, Hyunsoo
year 2021
title Using Virtual Filters to Measure how the Elderly Perceive Color
doi https://doi.org/10.52842/conf.caadria.2021.2.325
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 325-334
summary This study was conducted to test the effectiveness of a virtual filter that digitally compensates for age-related changes in color perception. Many elderly people experience declining color perception. Medical studies have been conducted on how elderly peoples lenses affect their color perception. However, digital practical method for improving elderly peoples color perception need to be developed. Subway map is a good example of many elders daily experience. To adapt virtual filters to subway maps colors, standard short-wavelength colors, namely purple and green, were selected for variance independence (VI) because colors with short wavelengths of 400-600 nm on visible light are difficult for elderly people to perceive. Standard color VIs of subway lines and VI transferred to artificial lenses were measured with a spectrophotometer. CIE LAB and RGB; Color value on virtual filter (VD) was analyzed from VI. This virtual filter was developed based on artificial lenses using Dynamo. A visual programming algorithm was developed to adjust the color of a virtual filter through an interface. The results showed that virtual filters can be used to help elderly people detect short-wavelength colors. Therefore, virtual filters should be incorporated into lenses for use by the elderly.
keywords Virtual filter; Elderly people's perception; Colors on subway map
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_331
id caadria2021_331
authors Globa, Anastasia, Parker, Callum, Philp, Jude and Antonios, John
year 2021
title Big Data Bugs - Investigating the design of Augmented Reality applications for museum exhibitions
doi https://doi.org/10.52842/conf.caadria.2021.2.305
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 305-314
summary This paper presents a reflection on the co-design approach taken for designing a web-based and smartphone-augmented reality (AR) application (app) for a local museum exhibit on geo-located data for entomology specimens. The AR app allows visitors to spatially visualise insect specimens in-situ and view more detailed information through their own devices. The design of the app was guided by continuous input from curators of the museum to ensure it met their requirements. The contribution of this paper is two-fold: (1) design recommendations for AR apps created for museum exhibitions, which are derived from a focus group session with museum curators; and (2) considerations for co-designing AR apps in museum contexts, based on a reflection of the design process. This paper details the iterative co-design process that was adopted for the Big Data Bugs project and presents a short summary of results deriving from a focus group testing with museum curators.
keywords augmented reality; data visualization; human computer interactions; museum exhibitions; co-design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia20_120p
id acadia20_120p
authors Hirth, Kevin
year 2020
title Short Stack
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 120-123
summary Short Stack is a bare minimal structure using only laminated sheets of structural metal decking for all elements of its structure and enclosure. The project operates under a simple principle. Structural metal decking is a one-way system that resists loads well in one direction, but not in the other. When this decking is stacked into rotated sections and tensioned together, the resultant sandwich of corrugated metal is resistant to loading in every direction. These sandwiches become walls, floors, and roofs to a temporary structure. The compounded effect at the edges of the rotated and cropped decking is one of filigree or an ornamental articulation. The sandwich, which is mostly hollow due to the section of the decking, provides a sense of airy lightness that is at odds with its bulky mass. The structure, therefore, teeters between being unexpectedly open and at once heavy. The economy of the project is in its uniformity and persistent singularity. By maintaining a single palette of material and using a plasma cutting CNC bed to cut each section of the decking, the structure is simply assembled. The digital intelligence that lies underneath the apparent formal simplicity of the project is two-fold. Firstly, each sheet of metal decking is different from the next. Because of the locations of bolt-holes and constant variability of rotation and cropping of each sheet, it is a project that expresses uniformity rather than articulation through discretization. Secondly, the project appears solid and monolithic but is hollowed structurally to minimize the weight of the assembly. Parametric tools are implemented to maximize material efficiencies by hollowing the interior of each sandwich for load optimization. The project is presently in prototyping and documentation and will go into construction in Spring 2021 on a site in downtown Denver.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2021_283
id caadria2021_283
authors Sanatani, Rohit Priyadarshi, Chatterjee, Shamik Sambit and Manna, Ishita
year 2021
title Subject-specific Predictive Modelling for Urban Affect Analysis
doi https://doi.org/10.52842/conf.caadria.2021.2.387
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 387-396
summary Recent developments in crowd-sourced data collection and machine intelligence have facilitated data-driven analyses of the affective qualities of urban environments. While past studies have focused on the commonalities of affective experience across multiple subjects, this paper demonstrates an integrated framework for subject-specific affective data collection and predictive modelling. For demonstration, 10 field observers recorded their affective appraisals of various urban environments along the scales of Liveliness, Beauty, Comfort, Safety, Interestingness, Affluence, Stress and Familiarity. Data was collected through a mobile application that also recorded geo-location, date, time of day, a high resolution image of the users field of view, and a short audio clip of ambient sound. Computer vision algorithms were employed for extraction of six key urban features from the images - built score, paved score, auto score, sky score, nature score, and human score. For predictive modelling, K-Nearest Neighbour and Random Forest regression algorithms were trained on the subject-specific datasets of urban features and affective ratings. The algorithms were able to accurately assess the predicted affective qualities of new environments based on the specific individuals affective patterns.
keywords Urban Affect; Subjective Experience; Predictive Modelling; Affect Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2021_262
id sigradi2021_262
authors Turazzi Luciano, Patrícia, Klein Taparello, Gladys Ilka, Pupo, Regiane, Silva e Lima Schleder, Carolina and Vaz, Carlos Eduardo Verzola
year 2021
title Contribution of Maker Education to Teaching and Society: Report of Two Experiments
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 993–1004
summary The maker movement, which is based on experimentation, can be used as a teaching approach in universities and in society. This work presents the results of teaching-learning experiments of robotics projects using maker education approach in learning by doing and project-based learning methods. The research had two moments, in the first, two short-term workshops were held using prototyped cardboard parts and discarded electronic components. In the second moment, a long-term workshop was held with robotic kits. The data gathered through unsystematic observations was analyzed in order to understand the benefits of introducing maker education in different contexts and to present the limitations of each group. The experiments provided a collaborative experience, encouraging the development of initiative, autonomy, and critical and investigative sense of students in relation to the proposed problem.
keywords cultura maker, educaçao maker, ensino, prototipagem digital
series SIGraDi
email
last changed 2022/05/23 12:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_207969 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002