CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ascaad2021_055
id ascaad2021_055
authors El Hussainy, Mariam; Mohammed Mayhoub, Ahmed El Kordy
year 2021
title A Computational Approach for Optimizing the Daylighting Performance of Existing Buildings
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 69-83
summary Daylighting provision gives a significant contribution to the enhancement of the indoor visual environment and user comfort. This study aims to provide a methodology to assess and optimize daylighting performance in buildings. The paper utilizes simulation techniques for identifying the most efficient daylight performance by incorporating parametric optimization tools to enhance the daylighting performance of existing buildings. The developed workflow includes three consecutive phases. The first examines the daylighting performance of the existing building. The second phase is concerned with daylighting adequacy and the third aims to optimize the quality of light rather than just the quantity through the utilization of a simple shading system to parametrically investigate the effect of using different shading configurations on daylighting performance and to select the optimal solution. A louver system was parameterized according to a predefined process that associates its depth, count and rotation angle while a vertical screen was parametrized according to its scale and tilt angle. To examine the potentials of the proposed multi-stage method, it has been implemented on an office building located in new Cairo, Egypt. The results demonstrate that using the proposed optimization strategy drastically enhanced the Spatial Daylighting Autonomy of the building from 27% to 87% in comparison with the base case. Moreover, the optimum shading solution enhanced the daylighting quality by reducing the glare probability for better visual comfort from 60% to only 14%.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_069
id ascaad2021_069
authors Cheddadi, Aqil; Kensuke Hotta, Yasushi Ikeda
year 2021
title Exploring the Self-Organizing Structure of the Moroccan Medina: A Simulation Model for Generating Urban Form
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 672-685
summary This research explores the use of generative design and computational simulations in the exploration of urban compositions based on traditional urban forms from North Africa. Upon the examination of these urban settlements, we discuss the relationship between traditional urban form and generative urbanism theory. We investigate several factors that allow these self-generated urban tissues to be highly adaptive to social, spatial, and environmental change. Following this, we formulate guidelines to reinterpret some of the characteristics of these urban forms. Built on these features, the simulation seeks to explore the generation of abstract urban forms and their optimization. In this regard, this experiment utilizes 3D and parametric design tools (Rhinoceros 3D and Grasshopper) to define a generative urban simulation and optimization model. It explores the use of algorithmic design methodology in the definition and optimization of the generated urban form. For this purpose, grid-based operations with base modules are used in conjunction with introverted urban blocks. We employ evolutionary algorithms and Pareto front methodology to visualize and rank a multitude of optimized results that are evaluated using three different and conflicting design objectives: sun exposure, physical accessibility, and urban density. The results are ranked and analyzed by comparing the outcomes of these different objective functions. The result of this study shows that it is possible to allow a degree of diversification of a myriad of urban configurations with a generative form-finding algorithm while still maintaining a rather commendable adaptability to various design constraints in the case of high-density settings. In this research, it is anticipated that an algorithmic design model is a fitting contemporary solution that can simulate the philosophy of a design made without a designer and offer a wide range of objective-based spatial solutions. It sets the stage for a discussion about the relevance of reinterpreting traditional urban forms from north Africa by designing a generative model that allows for self-organization.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_263
id sigradi2021_263
authors de Oliveira, Lucas, Poeta Mangrich, Camila, Pavan, Luís Henrique, Almeida, Renato and Kós, José
year 2021
title University Campus Walkability Index Supported by Digital Databases
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 303–314
summary Studies on the university campus commonly consider its spatial particularities in comparison to the city. However, the university debate about mobility also addresses urban-related challenges, like those posed by the dependence on vehicles and incentives for active mobility. Considering internal mobility, this work explores Wi-Fi connections from a Brazilian public university to trace community trajectories and population density on campus. We adopted objective data from the built environment for the application of a walkability index. The procedures were performed using GIS and the results shared for visualization in the Kepler.gl application. The results include walkability indices for different campus sectors. The discussion focuses on the potential use of the index in promoting a more integrated and less automobile-dependent campus.
keywords visualizaçao de dados, ciencia de dados, wi-fi, campus universitário, desenho urbano
series SIGraDi
email
last changed 2022/05/23 12:10

_id sigradi2021_29
id sigradi2021_29
authors Delgado, Maria and Collins, Jeffrey
year 2021
title Otavalo Textile Grammar: Patterns and Dialogues
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 669–683
summary This paper focuses on the woven textiles of Otavalo, Ecuador, as a case study for improved cultural representation in architectural design. A shape grammar methodology is used to identify specific geometry and elucidate relationship rules found in existing artifacts. These geometry and relationships are subsequently used to produce patterns; both replicas of traditional tapestries as well as new configurations. Extending from 2D to 3D and from digital to physical, sets of modular prototypes are developed based on patterns produced using the defined Otavalo Textile Grammar. Model parts are supplied to study participants; new building blocks for architecture as a spatial and social undertaking.
keywords maker culture, design computation, shape grammars, digital craft
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_109
id ecaade2021_109
authors Doumpioti, Christina and Huang, Jeffrey
year 2021
title Intensive Differences in Spatial Design - Reversing form-finding
doi https://doi.org/10.52842/conf.ecaade.2021.1.009
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 9-16
summary Drawing from the philosophy of science, 'intensive' qualities define differences in degree instead of 'extensive' ones that define additive quantities. More relevant to architecture, intensive differences can define transient boundaries such as warmness and coolness, dryness and moisture, light and shadow, or visual accessibility, to name a few.The question that serves as a starting point of this study is whether the attributes mentioned above can become form-giving agents during the design process and, therefore, whether they become fundamental parameters for the conceptualization and configuration of extensive spatial qualities. This question is explored using Generative Adversarial Networks and image-to-image translation. The dataset consists of two types of images; one consists of spatial configurations representing extensive attributes. The second set depicts intensive characteristics of visual accessibility. The study proposes a conceptual model and workflow that reverses form-finding and enables the design of environments through the specification of desired intensive attributes. Furthermore, it discusses the advantage of working with this method in search of architectural environments with embedded spatial experiences.
keywords Intensive Differences; Form-Finding; Isovist Simulation; conditional Generative Adversarial Networks (cGAN)
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2021_254
id ecaade2021_254
authors Eisenstadt, Viktor, Arora, Hardik, Ziegler, Christoph, Bielski, Jessica, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Comparative Evaluation of Tensor-based Data Representations for Deep Learning Methods in Architecture
doi https://doi.org/10.52842/conf.ecaade.2021.1.045
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 45-54
summary This paper presents an extended evaluation of tensor-based representations of graph-based architectural room configurations. This experiment is a continuation of examination of recognition of semantic architectural features by contemporary standard deep learning methods. The main aim of this evaluation is to investigate how the deep learning models trained using the relation tensors as data representation means perform on data not available in the training dataset. Using a straightforward classification task, stepwise modifications of the original training dataset and manually created spatial configurations were fed into the models to measure their prediction quality. We hypothesized that the modifications that influence the class label will not decrease this quality, however, this was not confirmed and most likely the latent non-class defining features make up the class for the model. Under specific circumstances, the prediction quality still remained high for the winning relation tensor type.
keywords Deep Learning; Spatial Configuration; Semantic Building Fingerprint
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2021_108
id ascaad2021_108
authors Elbaz, Noran; Mohamed Ezzeldin
year 2021
title Phenomenological BIM Design Evaluation of Indoor Spatial Configurations
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 371-383
summary The studies of evaluating spaces’ different spatial configurations mostly cover the physical dimensions; especially when using digital platforms such as BIM. The gap between the physical dimension of abstract spaces, and the metaphorical senses of these places, has always been a missing layer when testing the quality of space. The current BIM tools – as a digital platform – are mostly based only on physical dimensions of spaces, where the phenomenological approach is not considered as one of the layers or attributes when evaluating the spatial configurations of indoor spaces. This missing layer of the user perceptual experience leads to incomprehensive results of spatial design evaluation. This paper aims to identify the gap between the qualitative and quantitative studies of space configurations and the experiential dimension of indoor spaces in order to increase the accuracy of design evaluation by filling the missing gaps through adding; to the spatial configurations of physical ‘Space’ another dimensions and attributes that are related to senses of ‘Place,’ highlighting the need of creating a SIM, “Sensory Information Modeling,” a digital platform for Places integrated with BIM for Spaces.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_150
id ascaad2021_150
authors Fathima, Linas; Chithra K
year 2021
title Shapegrammar: A Tool for Research in Traditional Architecture
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 465-478
summary Every Architectural style consists of an Architectural language with vocabulary, syntax, and semantics. The compositional principles of a particular style can be defined over as a set of rules. These rules can be reformed and converted using mathematical computational techniques using Shape Grammar (A systematic method used for interpreting spatial design and activities). Researchers across the world used shape grammar to analyse design patterns of traditional architectural styles, master architects' works, etc. These rule-based methods can be adopted into computer languages to produce new designs. Traditional Architecture of a region portrays culture integrated with all aspects of human life. The proposed paper is to study the potentials of shape grammar to use as a tool in the research of traditional architectural styles by analysing case studies. The research methodology reviews the previous shape grammar studies conducted in various conventional styles and comparative analysis of the approaches of authors in shape grammar generation. The research by Lambe and Dongre on the formulation of shape grammar of Pol houses of Ahmadabad and Cagdas's work on traditional Turkish houses is an example of this. T Knight had formulated shape grammar of Japanese tea houses, and Yousefniapasha and Teeling developed a grammar of vernacular houses facing rice fields of Mazandaran, Iran. Similarly, many researchers used shape grammars as a tool to analyse traditional architecture. So the study will compare the different traditional shape grammar generations and formulate a sample shape grammar of a traditional prototype to conclude the scope of further research in the domain.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_113
id caadria2021_113
authors Fink, Theresa, Vuckovic, Milena and Petkova, Asya
year 2021
title KPI-Driven Parametric Design of Urban Systems
doi https://doi.org/10.52842/conf.caadria.2021.2.579
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 579-588
summary We present a framework for data-driven algorithmic generation and post-evaluation of alternative urban developments. These urban developments are framed by a strategic placement of diverse urban typologies whose spatial configurations follow design recommendations outlined in existing building and zoning regulations. By using specific rule-based generative algorithms, different spatial arrangements of these urban typologies, forming building blocks, are derived and visualized, given the aforementioned spatial, legal, and functional regulations. Once the envisioned urban configurations are generated, these are evaluated based on a number of aspects pertaining to spatial, economic, and thermal (environmental) dimensions, which are understood as the key performance indicators (KPIs) selected for informed ranking and evaluation. To facilitate the analysis and data-driven ranking of derived numeric KPIs, we deployed a diverse set of analytical techniques (e.g., conditional selection, regression models) enriched with visual interactive mechanisms, otherwise known as the Visual Analytics (VA) approach. The proposed approach has been tested on a case study district in the city of Vienna, Austria, offering real-world design solutions and assessments.
keywords Urban design evaluation; parametric modelling; urban simulation; environmental performance; visual analytics
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2021_211
id sigradi2021_211
authors Gutiérrez, Arturo F., Roig, Jeshua H. and Martínez, Carlos D.
year 2021
title Markets Post Covid-19: Agent-Based Computational Validation Methodology For Urban Interventions On Spontaneous "Informal Street Markets" In Public Spaces
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 265–275
summary The Covid-19 health crisis has turned spontaneous “informal street markets” into dangerous hotspots for the spread of Covid-19 due to the formation of crowds of people. These informal markets are due to a lack of state planning and regulation, a reality that exists throughout Latin America. This research aims to analyse these spaces through a methodology for computational validation that uses an agent-based model (ABM) for the abstraction and simulation of the displacement of people (moving agents) and their behaviour in the spatial configuration of the area (static agents), identifying an aggregated score in each simulation with the purpose of designing urban interventions that reduce the probability of forming crowds. The paper presents the proposed methodology and the ABM with a preliminary validation by simulating two spatial configurations with two hypothetical scenarios (analyses with 10 and 50 agents) and comparing their aggregated scores, showing a correlation between spatial configuration with the formation of crowds.
keywords ABM, simulación espacial, modelo estocástico, diseno computacional, mercados
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_113
id ascaad2021_113
authors Gün, Ahmet; Burak Pak, Yüksel Demir
year 2021
title Technology-Driven Participatory Spatial Design in a Developing World Context: The Case of Istanbul
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 551-567
summary Nowadays, ICT-based participatory design methods, techniques and tools are increasingly used across the globe. A majority of these are employed in high-income “developed” countries with advanced democratic systems which aim at including citizens; desires, needs, proposals as valuable input in city-making processes. In contrast, in the Global South, only a limited number of ICT-based practices aim to empower the citizens in urban design and planning at higher instances. There is a need for deeper research into how citizens can be involved in urban design in developing countries like Turkey situated in between the Global North and the South. In this context, this research will focus on Istanbul, Turkey as a key case. Different than the developed world context, enabling ICT-based participation in Turkey has a wide range of challenges. Among those are the lack of open and governmental data and transparency, the unwillingness of the policymakers to promote and employ participatory design, top-down approaches are the other weak points of these countries. Responding to these challenges, the aims of this study are: 1) to critically address the weaknesses and requirements of existing urban development practices in developing countries with a focus on Turkey, Istanbul and 2) to discuss the possible potentials of ICT-based participation tools and techniques to involve citizens in city-making processes.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia21_354
id acadia21_354
authors Liu, Yulun; Lu, Yao; Akbarzadeh, Masoud
year 2021
title Kerf Bending and Zipper-in Spatial Timber Tectonics
doi https://doi.org/10.52842/conf.acadia.2021.354
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 354-361.
summary Space frames are widely used in spatial constructions as they are lightweight, rigid, and efficient. However, when it comes to the complex and irregular spaces frames, they can be difficult to fabricate because of the uniqueness of the nodes and bars. This paper presents a novel timber space frame system that can be easily manufactured using 3-axis CNC machines, and therefore increase the ease of the design and construction of complex space frames. The form-finding of the space frame is achieved with the help of polyhedral graphic statics (PGS), and resulted form has inherent planarity which can be harnessed in the materialization of the structure. Inspired by the traditional wood tectonics kerf bending and zippers are applied when devising the connection details. The design approach and computational process of this system are described, and a test fabrication of a single node is made via 3-axis CNC milling and both physically and numerically tested. The structural performance shows its potentials for applications in large-scale spatial structures.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_233
id caadria2021_233
authors Ascoli, Raphaël
year 2021
title Augmenting computational design agency in emerging economies
doi https://doi.org/10.52842/conf.caadria.2021.2.639
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 639-648
summary This /practice-based design research/ investigates the possibility of computational design to increase agency and impact in emerging economies through real-world projects. By cultivating a new kind of relationship to issues in development and local untapped resources, they inspire for more public engagement and resource-based conversations within a spatial framework. The topics that were addressed in this research are the democratization of data and affordability of construction. These two on-going early-stage initiatives have used computational design tools at specific areas in the projects development, therefore optimizing the parts where low-tech tools werent sufficient. This demand driven design process explores ways in which different levels of technology can augment each other.
keywords space; resource; housing; myanmar; optimization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_263
id ecaade2021_263
authors Azadi, Shervin and Nourian, Pirouz
year 2021
title GoDesign - A modular generative design framework for mass-customization and optimization in architectural design
doi https://doi.org/10.52842/conf.ecaade.2021.1.285
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 285-294
summary We present a modular generative design framework for design processes in the built environment that provides for the unification of participatory design and optimization to achieve mass-customization and evidence-based design. The paper articulates this framework mathematically as three meta procedures framing the typical design problems as multi-dimensional, multi-criteria, multi-actor, and multi-value decision-making problems: 1) space-planning, 2) configuring, and 3) shaping; structured as to the abstraction hierarchy of the chain of decisions in design processes. These formulations allow for applying various problem-solving approaches ranging from mathematical derivation & artificial intelligence to gamified play & score mechanisms and grammatical exploration. The paper presents a general schema of the framework; elaborates on the mathematical formulation of its meta procedures; presents a spectrum of approaches for navigating solution spaces; discusses the specifics of spatial simulations for ex-ante evaluation of design alternatives. The ultimate contribution of this paper is laying the foundation of comprehensive Spatial Decision Support Systems (SDSS) for built environment design processes.
keywords Generative Design; Spatial Configuration; Serious Gaming; Mass Customization; Decision Problems
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2021_375
id sigradi2021_375
authors Banda, Pablo and Valenzuela-Astudillo, Eduardo
year 2021
title Immersive Variations: Connecting Architectural Sensitivity with Parametric Design through Collaborative Virtual Reality Environments
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1017–1028
summary Undergraduate design studies for digital fabrication and non-standard architecture are complex as their participants are usually far from systems thinking and have a basic level of confidence in the use of advanced digital tools. Furthermore, in the face of high formal complexity, the understanding of the structural system and its effects for the inhabitant are not evident. This work presents an implementation of Virtual Reality to introduce Latin American architecture university students to digital fabrication and parametric design, taking as its main premise that during the initial design stage, the designed architecture using virtual reality techniques and spatial perception can engage students to appreciate the value in these new designs, formulating new arguments and paradigms to further contribute to their training as contemporary professionals.
keywords irtual Reality, Digital fabrication, Architecture, Spatial Perception
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_359
id sigradi2021_359
authors Carrasco-Walburg, Carolina, Valenzuela-Astudillo, Eduardo, Maino-Ansaldo, Sandro, Correa-Díaz, Matías and Zapata-Torres, Diego
year 2021
title Experiential Teaching-learning Tools: Critical Study of Representational Media and Immersion in Architecture
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 475–488
summary The use of Virtual Reality (VR) in teaching-learning process of design, theory and history of architecture has increased in terms of virtual tours. A preliminary study of techniques and capabilities of Immersive Virtual Reality (IVR) systems allowed us to establish that the immersive and interactive virtual experience facilitates the perception and enhancement of spatial qualities. In addition, it facilitates analysis since it promotes observation and the development of spatial thinking. However, the use of this medium as a tool for analysis is less frequent. Therefore, in this research we comparatively evaluate the impact that VR has on such a task. We developed an analysis instrument using experiential learning cycles that was tested with students in control and experimental groups. As a result, we found that the experience of inhabiting facilitates integration of fundamental concepts, allowing empirical evaluation of architecture and streamlining communication in the classroom as an active learning strategy.
keywords Virtual Reality, Architecture, Spatial Perception, Experiential Learning, Teaching-Learning Process
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_367
id sigradi2021_367
authors da Rocha Santos, Carlos Eduardo, Dias, Maria Angela and Braida, Frederico
year 2021
title Digital Games and Spatial Skills in Architecture and Urbanism Education
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 867–876
summary This article addresses the issue of the relationship between digital games and the development of spatial thinking. The research question is: how can digital games be used to contribute to the development of geometric and spatial skills and competencies, extremely necessary for contemporary architects and urban planners? The main objective is to highlight digital games as a possible and emerging educational resource in the era of digital culture. From a methodological point of view, the article is the result of qualitative and exploratory research, both bibliographical and empirical. The results presented, which are the result of a didactic experiment carried out with the game Minecraft, point to the adoption of digital games as powerful playful didactic tools capable of contributing to the exercise and development of spatial vision and geometric thinking in Architecture and Urbanism.
keywords Jogos digitais, aprendizagem, habilidade espacial, educaçao do olhar e Arquitetura e Urbanismo
series SIGraDi
email
last changed 2022/05/23 12:11

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_106243 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002