CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2023_270
id sigradi2023_270
authors Asevedo, Laíze, Monteiro, Verner, Medeiros, Deisyanne, Rodrigues, Fernanda, Moura, Marcone and Rocha, Thuany
year 2023
title Parameterization and Gamification in Descriptive Geometry Learning: One Study, Two Scenarios
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1047–1058
summary Despite the complexity of parametric modeling, it is possible to apply it in educational context with a simpler approach. The COVID-19 pandemic increased the use of active methodologies in education. Gamification, particularly, should be emphasized regarding its association with parametric modeling. Post-pandemic scenario made possible the reinsertion of traditional practices, thus adding successful learning methods from online teaching. This paper aims to compare the adoption of parameterization and gamification to teach Descriptive Geometry on both teaching scenarios: online and presential. Two experiments were implemented to four Technical Drawing classes - A and B (2021), C and D (2022) -, in high school and technician level. The quantitative results addressed to the efficiency of parametric modeling as a didactic tool, and the qualitative results indicated that the students accepted the experiences of parameterization and gamification, on both scenarios. Nevertheless, there were subtle differences between the results from online and presential scenarios.
keywords Online learning, presential learning, parameterization, gamification, descriptive geometry
series SIGraDi
email
last changed 2024/03/08 14:08

_id sigradi2021_359
id sigradi2021_359
authors Carrasco-Walburg, Carolina, Valenzuela-Astudillo, Eduardo, Maino-Ansaldo, Sandro, Correa-Díaz, Matías and Zapata-Torres, Diego
year 2021
title Experiential Teaching-learning Tools: Critical Study of Representational Media and Immersion in Architecture
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 475–488
summary The use of Virtual Reality (VR) in teaching-learning process of design, theory and history of architecture has increased in terms of virtual tours. A preliminary study of techniques and capabilities of Immersive Virtual Reality (IVR) systems allowed us to establish that the immersive and interactive virtual experience facilitates the perception and enhancement of spatial qualities. In addition, it facilitates analysis since it promotes observation and the development of spatial thinking. However, the use of this medium as a tool for analysis is less frequent. Therefore, in this research we comparatively evaluate the impact that VR has on such a task. We developed an analysis instrument using experiential learning cycles that was tested with students in control and experimental groups. As a result, we found that the experience of inhabiting facilitates integration of fundamental concepts, allowing empirical evaluation of architecture and streamlining communication in the classroom as an active learning strategy.
keywords Virtual Reality, Architecture, Spatial Perception, Experiential Learning, Teaching-Learning Process
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_263
id sigradi2021_263
authors de Oliveira, Lucas, Poeta Mangrich, Camila, Pavan, Luís Henrique, Almeida, Renato and Kós, José
year 2021
title University Campus Walkability Index Supported by Digital Databases
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 303–314
summary Studies on the university campus commonly consider its spatial particularities in comparison to the city. However, the university debate about mobility also addresses urban-related challenges, like those posed by the dependence on vehicles and incentives for active mobility. Considering internal mobility, this work explores Wi-Fi connections from a Brazilian public university to trace community trajectories and population density on campus. We adopted objective data from the built environment for the application of a walkability index. The procedures were performed using GIS and the results shared for visualization in the Kepler.gl application. The results include walkability indices for different campus sectors. The discussion focuses on the potential use of the index in promoting a more integrated and less automobile-dependent campus.
keywords visualizaçao de dados, ciencia de dados, wi-fi, campus universitário, desenho urbano
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_058
id ascaad2021_058
authors ElGewely, Maha; Wafaa Nadim, Mostafa Talaat, Ahmad El Kassed,Mohamed Yehia, Slim Abdennadher
year 2021
title Immersive VR Environment for Construction Detailing Education: BIM Approach
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 114-128
summary According to literature in education, adults learn best when learning is active, self-directed, problem-based, and relevant to their needs. In Building Construction Education, construction site visits provide students with real-life practical experience which are considered an extension for classroom. Nevertheless, it is challenging to integrate construction site visits regularly during the academic semester with respect to the class specific needs. Virtual Reality as an interactive immersive technology may facilitate virtual construction site that meets the learning needs where students can explore and build in a real scale environment. The proposed VR environment is an HMD VR platform for construction detailing that provides experiential learning in a zero-risk environment. It builds on integrating VR technology as a medium and Building Information Modeling (BIM) as a repository of information. This work discusses the proposed environment curricular unit prototype design, implementation, and validation. System usability and immersion are assessed both qualitatively and quantitatively. After considering the feedback, The VR environment prototype is then validated on the level of learning outcomes, providing the evidence that it would enhance students’ engagement, motivation and achievement accordingly.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_062
id ascaad2021_062
authors Elgobashi, Aya; Yasmeen El Semary
year 2021
title Redefinition of Heritage Public Spaces Using PPGIS: The Case of Religious Complex in Old Cairo
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 355-370
summary Plenty of challenges all over the world are affecting the urban development of spaces in the cities, especially those of heritage sites; these urban spaces provide various ambiances that appeal to the senses. Although surrounded open spaces in heritage sites are full of rich, deep knowledge that plays an active role in the community perceptions, it has been recently neglected. A contribution is paid to the combination of digital technologies to help in preserving those spaces. Its integrated use could exponentially increase the effectiveness of conservation strategies of ancient buildings. GIS technology became a usual documentation tool for heritage managers, conservators, restorers, architects, archaeologists, painters, and all other categories of experts involved in cultural heritage activities. Consequently, the GIS has faced strong criticism as it is a tool for documentation without engaging in the public environment and the users’ needs; as a result, GIS cannot help in any enhancing process as it does not have any idea about the needs of the users. This paper analyses public uses efficiency in heritage public spaces in Cairene context using public participation geographic information system (PPGIS) methodology, as it gives attention to the term “user” to include the “public” incorporating the concept of “public participation” commonly used in planning. An online survey was set up, based on Google Maps, where respondents were asked to place and rate twenty-five items on an interactive map done by (ARCGIS 10.4). These items were based on the criteria of placemaking to make those spaces full of creative ambiance to be more attractive and useful to the communities. Finally, 200 valid surveys have been collected and mapped 1500 opinions have been mapped. The Results of this research show that PPGIS is an effective tool in measuring the efficiency of those heritage public spaces, which may be valuable for future planning.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_054
id ascaad2021_054
authors Kontovourkis, Odysseas; Andreas Konstantinou, Nikos Kyrizi, Panagiota Tziourrou,
year 2021
title Built-In Immersive VR Technology for Decision-Making in Design and Simulation of a Flexible Shading Device
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 190-200
summary This paper discusses the potential offered by Virtual Reality (VR) and accompanied gesture-based devices as tools for architectural design and simulation. This is done by outlining a workflow and by demonstrating an experimental study for the development of an interactive, flexible and parametric shading device consisting of bending-active wooden strips. More specifically, the project focuses on the relationship between physical inputs acquisition and virtual experience of two users in space. Through the use of Kinect and VR headset, the first user is responsible to check and control the shading system regarding the shape and sun direction. The aim is to create configurations that serves his/her shading needs by moving his/her hand in order to hide the sun in a game like procedure until satisfactory shading is acquired. The second user, through the use of a leap motion sensor and a projection screen, is able to check and control the efficiency of structure in terms of bending behavior and environmental impact, also in a loop of possibilities. Using the thump and pointer fingers he/she controls the bending behavior by watching a screen that shows in different colours the bending factor of each element. At the same time, the distance between his/her hands controls the number of elements in order to achieve the optimal rate between material consumption and shading. The two users can intervene sequentially or concurrently during the process. A series of investigations related to shading rate and bending behavior as well as minimum material consumption leading to lower environmental impact are conducted. This attempts to offer useful conclusions as regard the potential application of immersive VR technology as mechanism for decision-making in architecture and simulation but also in the fabrication of the suggested shading device.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_333
id caadria2021_333
authors Ma, Chun Yu, Chan, Yan Yu Jennifer and Crolla, Kristof
year 2021
title Expanding Bending-Active Bamboo Gridshell Structures' Design Solution Space Through Hybrid Assembly Systems
doi https://doi.org/10.52842/conf.caadria.2021.1.331
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 331-340
summary This paper discusses the development and testing of a novel design method for the low-tech construction of bending-active bamboo gridshell structures. It expands this typologys current design solution space by combining and building up on two common production methods for light-weight shell structures: 1) the lay-up method, typically used in bamboo architecture in which members are added one at a time, and 2) the flatbed method, in which a prefabricated equidistant flat grid without shear rigidity is propped up and deformed into its final doubly curved shape. The novel methodology expands the systems design solution space by incorporating singularities within the grid topology and by layering multiple separate grids. This allows for spatially radically different building geometries without loss of implementation workflow efficiency. A demonstrator design project, tested through a large-scale prototype model, is described to illustrate the possible spatially engaging architectural design opportunities presented by the novel approach.
keywords Bending-active structures; Bamboo architecture; Shell structures; Low-tech fabrication; Form finding
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2021_148
id ecaade2021_148
authors Mintrone, Alessandro and Erioli, Alessio
year 2021
title Training Spaces - Fostering machine sensibility for spatial assemblages through wave function collapse and reinforcement learning
doi https://doi.org/10.52842/conf.ecaade.2021.1.017
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 17-26
summary This research explores the integration of Deep Reinforcement Learning (RL) and a Wave Function Collapse (WFC) algorithm for a goal-driven, open-ended generation of architectural spaces. Our approach binds RL to a distributed network of decisions, unfolding through three key steps: the definition of a set of architectural components (tiles) and their connectivity rules, the selection of the tile placement location, which is determined by the WFC, and the choice of which tile to place, which is performed by RL. The act of thinking becomes granular and embedded in an iterative process, distributed among human and non-human cognitions, which constantly negotiate their agency and authorial status. Tools become active agents capable of developing their own sensibility while controlling specific spatial conditions. Establishing an interdependency with the human, that engenders the design patterns and becomes an indispensable prerequisite for the exploration of the generated design space, exceeding human or machinic reach alone.
keywords Reinforcement Learning; Machine Learning; Proximal Policy Optimization; Assemblages; Wave Function Collapse
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia21_502
id acadia21_502
authors Mytcul, Anna
year 2021
title ARchitect
doi https://doi.org/10.52842/conf.acadia.2021.502
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 502-511.
summary This research investigates gaming as a framework for design democratization in architecture, where the end user is the key decisionmaker in the design process. ARchitect is a multisensory game that promotes and explores the educational aspects of learning games and their influence on end user engagement with house co-design. This combinatorial game relies on an augmented reality (AR) application accessible through a smartphone, serving as a low-threshold tool for converting architectural drawings into 3D models in real time and using AR technology for design evaluation.

By allowing for learning through playing, ARchitect provides alternative ways of gaining knowledge about design and architecture and empowers non-experts to take active and informed positions in shaping their future urban environments on a micro-scale, rethinking conventional market relations and exploring emerging personal and public values. The ARchitect game challenges conventional participatory design where an architect plays an essential role in facilitation of the design process and translation of end users’ design proposals. In contrast, the proposed game system allows non-architect players to autonomously produce and access design solutions through embedded computational simulation by an AR application, thus giving an equal chance to non-professionals to express their design visions and become aware of potential implications of their ideas. By providing free access to the game contents through the ARchitect platform and a playful user experience by which design principles can be learned, this game will inspire the general public to engage in conversation about home design, eventually spreading architectural literacy to less-privileged communities.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_445
id caadria2021_445
authors Noel, Vernelle A. A., Nikookar, Niloofar, Pye, Jamieson, Tran, Phuong 'Karen' and Laudeman, Sara
year 2021
title The Infinite Line Active Bending Pavilion: Culture,Craft and Computation
doi https://doi.org/10.52842/conf.caadria.2021.1.351
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 351-360
summary Active bending projects today employ highly specialized, complex computer software and machines for design, simulation, and materialization. At times, these projects lack a sensitivity to cultures limited in high-tech infrastructures but rich in low-tech knowledges. Situated Computations is an approach to computational design that grounds it in the social world by acknowledging historical, cultural, and material contexts of design and making, as well as the social and political structures that drive them. In this article, we ask, how can a Situated Computations approach to contemporary active bending broaden the design space and uplift low-tech cultural practices? To answer this question, we design and build "The Infinite Line"- an active bending pavilion that draws on the history, material practices, and knowledges in design in the Trinidad Carnival - for the 2019 International Association for Shell and Spatial Structures (IASS) exhibition in Barcelona, Spain. We conclude that Situated Computations provide an opportunity to integrate local knowledges, histories, design practices, and material behaviors as drivers in active bending approaches, so that structure, material practices, and cultural settings are considered concurrently.
keywords Situated Computations; craft; wire-bending; active bending structures; Trinidad Carnival; dancing sculptures
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia21_564
id acadia21_564
authors Pellicano, Emily; Sturken, Carlo
year 2021
title GPT-OA; Generative Pretrained Treatise--On Architecture
doi https://doi.org/10.52842/conf.acadia.2021.564
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 564-571.
summary Technological advancements throughout the industrial era have created more efficient, more economical, and safer machines to aid – and often replace – human operations, continually altering our ways of knowledge and world making. Each industrial advancement radically changes social, political, economic, environmental, and even linguistic conditions. Currently upon us is artificial intelligence (AI); machine to human and machine to machine communications. Our investigation examines AI as a creative tool, instead of a machine for industry. Recent advancements in natural language processing have made artificially intelligent machines, specifi cally Generative Pretrained Transformers (GPT), a potential active partici- pant in a creative computational discourse. Our particular interest in GPT, and the core of this project, explores the role of language in machine learning and the role of the author and editor within a continually expanding network of agents in the construction of our collective environments.
series ACADIA
type field note
email
last changed 2023/10/22 12:06

_id sigradi2023_467
id sigradi2023_467
authors Scheeren, Rodrigo and Sperling, David Moreno
year 2023
title In between revolutions or the state of digital fabrication technologies in South America academia: a systematic and critical review
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 555–566
summary The main objective of this article is to grasp how technologies, techniques, and concepts related to Digital Fabrication were applied by South American players, in academic production from 2000 to 2021, through pedagogical activities, design projects, manufacturing processes, prototypes, and artifacts. We conducted a systematic review of publications from SIGraDi and eCAADe conferences, by authors active in South America during the period, identified from the CumInCAD database using the following terms: digital fabrication, digital manufacturing, digital fabrication, digital fabrication, rapid prototyping, CAD/CAM, robot* and 3d print*. 260 articles met the final criteria for inclusion, organized from the combination of 10 categories. The results show the dissemination of information about digital fabrication in many countries, focused on different trends of research and innovation, allowing us to understand the evolution of technological appropriation, thus offering an in-depth overview of our situation over the past 20 years.
keywords Digital Fabrication, Technological Appropriation, Systematic Review, Design Process, Digital Theory.
series SIGraDi
email
last changed 2024/03/08 14:07

_id caadria2021_312
id caadria2021_312
authors Silcock, David, Schnabel, Marc Aurel, Moleta, Tane and Brown, Andre
year 2021
title Participatory AR - A Parametric Design Instrument
doi https://doi.org/10.52842/conf.caadria.2021.2.295
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 295-304
summary CAAD research has frequently investigated the realm of public participation in large scale urban design re-development. Yet, the recurring problem lies with the lay-person often not being able to read 2d and 3d graphic information effectively, and hence be able to participate in the process of design development proactively. To date, much-existing research focuses on developing designs for urban settings using contemporary interaction devices such as the /Hololens/; such devices, with custom interfaces, require a significant level of expertise, or an experienced guide, to help navigate or create within these environments. Our paper presents a novel alternative based on real-time-virtual-engines, XR, and a parametric back-end system. The paper discusses the advantages that the resulting tangible user interface (TUI) can play in the lay-persons engagement in the design process. In the paper, we describe how the integration of interaction design (IxD) and augmented reality (AR) offer new opportunities due to the increasing availability of barrier-free technologies that can better include lay-persons as active participants in the design development process.
keywords Augmented Reality (AR / XR); Participatory Design; Urban Design; Tangible User Interface (TUI); Parametric
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_150
id ecaade2021_150
authors Song, Yanan and Yuan, Philip F.
year 2021
title A Research On Building Cluster Morphology Formation Based On Wind Environmental Performance And Deep Reinforcement Learning
doi https://doi.org/10.52842/conf.ecaade.2021.1.335
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 335-344
summary Nowadays, numerous researchers emphasize the significance of the environmen-tal performance-driven generative methodology. However, due to the complex coupling mechanism of environmental regulation factors, the existing optimiza-tion engines and applications are time-consuming and cumbersome. In this re-search, we propose a novel design methodology based on Deep Reinforcement Learning (DRL). This paper is divided into 3 sections, including theoretical framework, design strategy, and practical application. It first introduces an over-view of basic principles, illustrating the potential advantages of DRL in perfor-mance data-driven design. Based on this, the paper proposes a DRL-based gener-ative method. We point out a more specific discussion about the application and workflow of core DRL elements in architectural design. Finally, taking a grid-form urban space composed by multitude high-rise building blocks as an exam-ple, we present a application through a DRL agent to conduct numerous active wind environmental performance-based design tests. It is an interactive and gen-erative design method, owning multiple advantages of timeliness, convenience, and intelligence.
keywords Deep Reinforcement Learning; Environmental Performance Design; Generative Design; Building Cluster Formation
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2021_234
id ecaade2021_234
authors Turhan, Gözde Damla, Varinlioglu, Guzden and Bengisu, Murat
year 2021
title An Integrated Structural Optimization Method for Bacterial Cellulose-Based Composite Biofilms
doi https://doi.org/10.52842/conf.ecaade.2021.1.115
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 115-120
summary Today's technologies offer exciting new horizons to reconfigure the realm of digital design and fabrication with the use of biologically active materials. Some of the recent works have been exploring the potentials of utilizing biological systems either as mathematical models for digital design or as the material itself in digital fabrication. As one of the novel processes of recent design thinking approaches, this paper presents an example for the collaboration with living organisms and a multidisciplinary process in which the overall structure is based on the analysis of biological material properties, mechanical data acquisition and the integration to digital optimization. In this regard, bacterial cellulose-based composite biofilms were grown and tested for their tensile properties, followed by a proposal to integrate mechanical data to digital optimization for catenary forms to better engage with real world applications. The findings have shown that the use of catenary geometry for such biologically active materials that are relatively novel to the structural use has proven effective for different prototypes thanks to their natural and customized material properties such as the ability to self-stand and biodegrade.
keywords Material-based design; Structural optimization; Bacterial cellulose; Catenary geometry
series eCAADe
email
last changed 2022/06/07 07:58

_id ascaad2021_053
id ascaad2021_053
authors Vegas, Gonzalo; Francisco Calvo, Marcelo Bernal
year 2021
title Dynamic Aggregation: Merging Aggregation and Particle-Spring Systems in a Form-Finding Approach
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 661-671
summary We present the Dynamic Aggregation model: a form-finding tool to generate volumes with an active interior from a set of surfaces. We offer a novel approach to form-finding by combining two models: Particle-Spring Systems and Discrete Aggregation. Dynamic Aggregation allows the designer to generate emergent results while granting real-time control of the general topology in an interactive physics system. To do so, we built our model from a graph structure composed of Nodes and Links with a local notion of orientation. It allows the model to aggregate, bifurcate, link, and unlink continuously, starting from an initial Node configuration until reaching a target surface, while keeping the Node organization in the process. We test the model in two abstract scenarios and three architectural typologies with distinct topological and geometric features to display differentiation, adaptation, and control capabilities.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_126
id caadria2021_126
authors Wang, Sining and Zhao, Xinchen
year 2021
title Fuzzy Logic in Bending-active Gridshell Design
doi https://doi.org/10.52842/conf.caadria.2021.1.321
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 321-330
summary Performance-based design is encouraging designers to carry out quantitative-oriented research, sometimes indifferent to qualitative matters that concern social, cultural, and even psychological aspects. Design requirements related to humans subjective value and decision-making ought to be properly addressed. This paper begins with the discussion of architectural complexity about its ill-defined design problems. Humans linguistic variables contain the ambiguous yet uncertain value that seemingly unfit for todays precise digital design approaches. Hence, this paper involves the idea of fuzzy logic and its inference system, presents a soft computing method using membership functions to describe qualitative parameters. It then uses MATLAB Fuzzy Logic Toolbox, as an auxiliary design tool apart from Rhinoceros Grasshopper, to grade design options of a bending-active gridshell from an undergraduate design studio.
keywords Fuzzy logic; digital architecture; linguistic variable; bending-active gridshell
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_328
id caadria2021_328
authors Wells, Cameron, Schnabel, Marc Aurel, Moleta, Tane and Brown, Andre
year 2021
title Beauty is in the Eye of the Beholder - Improving the Human-Computer Interface within VRAD by the active and two-way employment of our visual senses
doi https://doi.org/10.52842/conf.caadria.2021.2.355
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 355-364
summary Whether it is via traditional methods with pen and paper or contemporary techniques such as 3D digital modelling and VR drawing, the eye typically plays a mostly passive or consuming role within the design process. By incorporating eye-tracking deeper within these methods, we can begin to discern this technologys possibilities as a method that encompasses the visual experience as an active input. Our research, however, developed the Eye-Tracking Voxel Environment Sculptor (EVES) that incorporates eye-tracking as there design actor. Through EVES we can extend eye-tracking as an active design medium. The eye-tracking data garnered from the designer within EVES is directly utilised as an input within a modelling environment to manipulate and sculpt voxels. In addition to modelling input, eye-tracking is also explored in its usability in the Virtual Reality User Interface. Eye-tracking is implemented within EVES to this extent to test the limits and possibilities of eye-tracking and the Human-Computer Interface within the realm of Virtual Reality Aided Design.
keywords Human-Computer Interface (HCI); Eye-Tracking; Virtual Reality; modelling; sketching
series CAADRIA
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_792708 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002