CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id ijac202119203
id ijac202119203
authors Dounas, Theodoros; Davide Lombardi, Wassim Jabi
year 2021
title Framework for decentralised architectural design BIM and Blockchain integration
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 157–173
summary The paper introduces a framework for decentralised architectural design in the context of the fourth industrial revolution. We examine first the constraints of building information modelling in regard to collaboration and trust. We then introduce Blockchain infrastructure as a means for creating new operational and business models for architectural design, through project governance, scaling collaboration nominally to thousands of agents, and shifting trust to the infrastructure rather than the architectural design team. Through a wider consideration of Blockchains in construction projects we focus on the design process and validate our framework with a prototype of BIM design optimisation integrated with a Blockchain mechanism. The paper concludes by outlining the contributions our framework can enhance in the building information modelling processes, within the context of the fourth industrial revolution.
keywords Blockchain, Building Information Modelling, trust, design collaboration, governance, Integrated Project Delivery, incentives, Ethereum
series journal
email
last changed 2024/04/17 14:29

_id ijac202119205
id ijac202119205
authors Fukuda, Tomohiro; Marcos Novak, Hiroyuki Fujii, Yoann Pencreach
year 2021
title Virtual reality rendering methods for training deep learning, analysing landscapes, and preventing virtual reality sickness
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 190–207
summary Virtual reality (VR) has been proposed for various purposes such as design studies, presentation, simulation and communication in the field of computer-aided architectural design. This paper explores new roles for VR; in particular, we propose rendering methods that consist of post-processing rendering, segmentation rendering and shadow-casting rendering for more-versatile approaches in the use of data. We focus on the creation of a dataset of annotated images, composed of paired foreground-background and semantic-relevant images, in addition to traditional immersive rendering for training deep learning neural networks and analysing landscapes. We also develop a camera velocity rendering method using a customised segmentation rendering technique that calculates the linear and angular velocities of the virtual camera within the VR space at each frame and overlays a colour on the screen according to the velocity value. Using this velocity information, developers of VR applications can improve the animation path within the VR space and prevent VR sickness. We successfully applied the developed methods to urban design and a design project for a building complex. In conclusion, the proposed method was evaluated to be both feasible and effective.
keywords Virtual reality, rendering, shader, deep learning, landscape analytics, virtual reality sickness, Fourth Industrial Revolution, computer-aided architectural design
series journal
email
last changed 2024/04/17 14:29

_id sigradi2021_118
id sigradi2021_118
authors Henriques, Gonçalo Castro, Xavier, Pedro Maciel, Silva, Victor de Luca and Bispo, Luca Rédua
year 2021
title Designing Learning Methods: Programming with Visual and Textual Language in Python
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 819–830
summary At the fourth industrial revolution, programming is gaining relevance, and it promises to be a fundamental teaching subject as math, science, languages or the arts. Architects project more than buildings; they have developed innovative methods and are among the pioneers developing visual programming. However, after more than 10 years of use visual programming in architecture, despite its fast learning curve, it presents limitations to address complex problems. To overcome them, we propose associating the advantages of visual with textual languages in Python. The article reports the process to implement the discipline “Computation for Architecture in Python” at FAU-UFRJ. The methodology comprises the translation and adaptation of generic programming disciplines, and exercises, for architecture. The results are encouraging and demonstrate that students value learning programming. However, despite the participants' satisfaction with the discipline, they report difficulties in programming fundamentals, such as lists, loops and recursion.
keywords Computational Design, Visual Programming, Textual Programming, Mixed Languages, Python
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_276
id caadria2021_276
authors Kawai, Yasuo
year 2021
title Development of a Tsunami Evacuation Behavior Simulation System for Selection of Evacuation Sites
doi https://doi.org/10.52842/conf.caadria.2021.2.499
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 499-508
summary In this study, a tsunami evacuation simulation system was developed using a game engine and open data to reflect the conditions of a local emergency situation at low cost. Chigasaki City, which is a heavily populated urban area and tourist destination along the coast of Japan, was selected as the target area for this study. A total of 20 simulations were conducted using 20,000 evacuation agents categorized as child, adult, or elderly residents or visitors randomly placed on the road surface in the target area. The simulation results indicate that a 10.60% agent damage rate may occur for a tsunami of height 10 m. In lowland areas where the river flows inland, tsunamis were observed to move up the estuary, trapping agents between the river and the coast. In such inland areas, several areas with no tsunami evacuation buildings were observed. Thus, the low-cost simulations provided by the proposed system can provide necessary support for planning and designating appropriate tsunami evacuation buildings in disaster-prone areas.
keywords Tsunami; Evacuation ; Agent; Simulation; Game Engine
series CAADRIA
email
last changed 2022/06/07 07:52

_id cdrf2021_80
id cdrf2021_80
authors Sara Pezeshk
year 2021
title Bio-Tile: An Intelligent Hybrid-Infrastructure
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_8
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Bio-tile is a multipurpose artifact designed for protecting the coastline from erosion while creating a landscape element and an architectural experience for visitors. Bio-tile performs as a mitigation strategy to slow down erosion while promoting biodiversity. This paper describes the methodology used to develop the bio-tile as the nexus between digital and environmental for resolving coastline challenges through material tectonics. A non-linear algorithm and nature’s inherent code are used to develop the Bio-tile, a nature-based hybrid infrastructure. This approach aims to generate a performance-oriented design by using emergence theory to construct shoreline elements adaptive to climatic conditions.
series cdrf
email
last changed 2022/09/29 07:53

_id caadria2021_400
id caadria2021_400
authors Sheehan, Liam Jordan, Brown, Andre, Schnabel, Marc Aurel and Moleta, Tane
year 2021
title The Fourth Virtual Dimension - Stimulating the Human Senses to Create Virtual Atmospheric Qualities
doi https://doi.org/10.52842/conf.caadria.2021.2.213
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 213-222
summary In a move away from the ubiquitous ocular-centric Virtual Environment, our paper introduces a novel approach to creating other atmospheric qualities within VR scenarios that can address the known shortcoming of the feeling of disembodiment. In particular, we focus on stimulating the human bodys sensory ability to detect temperature changes: thermoception. Currently, users perceptions of a 3D virtual environment are often limited by the general focus, in VR development for design, on the two senses of vision and spatialised audio. The processes that we have undertaken include developing individual sensory engagement techniques, refinement of sensory stimuli and the generation of virtual atmospheric qualities. We respond to Pallasmaas theoretical stance on the evolution of the human senses, and the western bias of vision in virtual engine development. Consequently, the paper investigates the role our senses, outside of the core five senses, have in creating a fourth virtual dimension. The thermoception dimension is explored in our research. A user can begin to understand and engage with space and the directionality within a virtual scenario, as a bodily response to the stimulation of the bodys thermoception sense.
keywords Virtual Reality; thermoception; sensory experience; immersion; atmosphere
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_106
id ecaade2021_106
authors Agirbas, Asli and Basogul, Elif Feyza
year 2021
title Structural Performance of Reciprocal Structures formed by using Islamic Geometrical Patterns
doi https://doi.org/10.52842/conf.ecaade.2021.2.391
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 391-400
summary Many Islamic geometric patterns consist of stripes which are recognizable in the two dimensional patterns. These stripes systematically pass over or under each other, thus they create a tessellation. This system has the same principle with reciprocal frame structures. Considering this situation, in this study, it is aimed to lift the two dimensional Islamic geometric patterns to the third dimension with the principle of reciprocal frame structures. A selected Islamic geometric pattern has been lifted to the third dimension in the reciprocal structure principle, and structural analyzes have been performed.
keywords Reciprocal frame structures; Islamic geometric patterns; Structural analysis
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_235
id sigradi2021_235
authors Akcay Kavakoglu, Aysegul
year 2021
title Computational Aesthetics of Low Poly: [Re]Configuration of Form
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 17–28
summary Low-poly modeling as an emerging field in visual arts, product design and architecture has an essential effect both on the designer's and the viewer/user's experience. It has an advanced abstraction ability over the reconfiguration of form. This paper examines the visual features of low-poly form in terms of the computability of its aesthetics. A visual feature classification is made by referencing George David Birkhoff's aesthetic measure theory based on the complexity and order relationship. Topo[i]wall installation has been examined as a case study during the analysis. The relationship between form, computation, aesthetics and human-computer interaction are elaborated according to the results. It has been observed that low poly modeling offers a variation set in terms of compositional features, which are proportion, balance, vertical and horizontal network system while protecting its unity through the analysis of the generated computational model.
keywords computational aesthetics, low poly, form configuration, projection mapping, media art
series SIGraDi
email
last changed 2022/05/23 12:10

_id ecaade2021_177
id ecaade2021_177
authors Aksin, Feyza Nur and Arslan Selçuk, Semra
year 2021
title Use of Simulation Techniques and Optimization Tools for Daylight, Energy and Thermal Performance - The case of office module(s) in different climates
doi https://doi.org/10.52842/conf.ecaade.2021.2.409
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 409-418
summary In recent years, performance-based design has become the key issue behind design decisions in the construction industry towards reducing energy consumption. Various simulation techniques and optimization tools have started to be used together for performance objectives to reach optimal solutions for complex design process. In the sector, one of the most energy-consuming buildings is offices. This study examines the effects of integration of simulation programs and optimization tools on the daylight, energy and thermal performances of office buildings on different climates. Two cities, Ankara and Izmir, in Turkey selected as locations. The study is carried out with total of thirteen parameters. With Rhinoceros/Grasshopper software, Honeybee, Ladybug and Octopus plug-ins used for daylight, energy and thermal simulation and performance optimization. With the results obtained, the optimal configurations related with selected parameters are determined for reducing energy consumption while improving daylight and thermal performance on different climates.
keywords daylight, energy and thermal comfort performance; multi-objective optimization; performance-based design; office buildings
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2021_071
id ascaad2021_071
authors Al Maani, Duaa; Saba Alnusairat, Amer Al-Jokhadar
year 2021
title Transforming Learning for Architecture: Online Design Studio as New Norm for Crises Adaptation Under COVID-19
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 129-141
summary For students, studying architecture necessitates a fundamental shift in learning mode and attitude in the transition from school. Beginner students are often surprised by the new mode of learning-by-doing and the new learner identity that they must adopt and adapt to in the design studio. Moreover, due to the COVID-19 pandemic, architecture teaching has moved online. Both instructors and students are experiencing dramatic changes in their modes of teaching and learning due to the sudden move from on-campus design studios to a virtual alternative, with only the bare minimum of resources and relevant experience. This study explored the virtual design studio as a transformative learning model for disaster and resilience context, including the factors that affect foundation students’ perceptions and experiences of the quality of this adaptation. Data obtained from 248 students who took online design studios during the lockdown in 15 universities in Jordan highlight many factors that make the experience of the online design studio more challenging. Despite these challenges, strongly positive aspects of the online studio were evident and widely discussed. A model of hyper-flexible design studio in which students can have a direct contact with their instructors when needed – in addition to online activities, reviews, and written feedback – is highly recommended for the beginner years. This HyFlex model will enrich students’ learning and understanding of the fundamentals of design and ensure that technology solutions deliver significant and sustainable benefits.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_234
id sigradi2021_234
authors Al Nouri, Mhd Ziwar, Baghdadi, Bilal and Khateeb, Nairooz
year 2021
title Re-coding Post-War Syria: The Role of Data Collection & Objective Investigations in PostWar Smart City
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 127–145
summary Re-coding post-war Syria is an ongoing research and data platform, focused on innovation and collecting comprehensive, infrastructural and socioeconomic analytics, synchronization data, by using AI driven to give a more transparent image of innovating a new methodology to regenerate the future of post-war smart cities into advanced and sustainable urban environments in a smarter way (Fig. 1). The pressure to achieve a rapid Post-war smart city without clear strategy and comprehensive analysis of all aspects will cause a particularly catastrophic collapse in the interconnected social structure, services, education and health care system, leaving a long-term impact on the society. This paper presents the current status of the Research & Documentation methodology in the Data Collection phase by the objective investigations conducted through a series of local and international workshops species developed in this research called “Re-Coding“, offering consequent direct ground surveys, statistics and documentation study of the targeted areas, merging professionalism and youth power with local community to detect an open source data used as a tool to re-generate a precarious area towards a new methodology.
keywords Post-War Smart cities, Collecting Data, Local community, Objective Investigations, Artificial intelligence
series SIGraDi
email
last changed 2022/05/23 12:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_126132 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002