CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id caadria2021_137
id caadria2021_137
authors Fattahi Tabasi, Saba, Alaghmandan, Matin and Rafizadeh, Hamid Reza
year 2021
title Simultaneous effect of form modifications and topology of the bracing system on the structural performance of timber high rise building - Introducing an innovative approach using parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 421-430
doi https://doi.org/10.52842/conf.caadria.2021.1.421
summary Topology optimization is a tool that minimizes the material consumption in a structure, while at the same time provides us design alternatives integrating architectural and structural engineering concepts. However, topology optimization is a structural engineering subject and its known methods are required professional knowledge of engineering to be used. In this article, the mutual effect of form modifications and topology of the bracing system in a 9-story timber exoskeleton high-rise building regarding the governing wind load and seismic load is examined. What differentiates this study from former ones and in fact its main purpose is introducing an innovative approach towards structural topology optimization using parametric design. In this innovative approach, the possibility of moving for each central node of bracing systems in defined ranges independently and the possibility of the existence or absence of each bracing member is provided. This parametric model will enable architects to optimize the topology of the structural elements which are part of their architectural design by themselves. The CMA-ES-algorithm-based optimization is done to minimize both total mass of structure per unit area and the horizontal displacement of the top floor. For modeling, optimizing cross-sections and structural analysis, Grasshopper and its plug-in called Karamba are utilized.
keywords Topology optimization; Form finding; Parametric design; Timber tall buildings; Exoskeleton structures
series CAADRIA
email
last changed 2022/06/07 07:55

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id sigradi2021_283
id sigradi2021_283
authors Alexandrino, Joao Victor Mota, Amorim, Leonardo Edson, Muniz, Vinícius Fernandes and Leite, Raquel Magalhaes
year 2021
title Architecture and Context: A Data-based Approach to Optimize Climate Performance of Built Facades
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1139–1150
summary The present research stems from a critical reflection about the environmental adaptability of existing building envelopes. The main goal is to explore how to balance environmental optimization with contextual constraints, using modularity, flexibility and mass customization as guiding principles. An application study was carried out with the development of a second skin proposal aligned with the use and context of the building under study. For this purpose, simulations that assess environmental conditions were developed within a visual programming tool, not only feeding the design process with essential information, but also providing a flexible creative process. Results show that such simulations allow the designer to interpret these studies more accurately, reducing the iterative guesswork, since in this workflow it is possible to transform these outputs into proposition parameters for new designs or interventions.
keywords Data-Driven Analysis, Optimization, Parametric Facade Design, Thermal performance, High-low architecture, Mass Customization, Second Skin
series SIGraDi
email
last changed 2022/05/23 12:11

_id cdrf2021_359
id cdrf2021_359
authors Ayoub Lharchi, Mette Ramsgaard Thomsen, and Martin Tamke
year 2021
title Joint Descriptive Modeling (JDM) for Assembly-Aware Timber Structure Design
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_33
summary Joints design is an essential step in the process of designing timber structures. Complex architectural topologies require thorough planning and scheduling, as it is necessary to consider numerous factors such as structural stability, fabrication capabilities, and ease of assembly. This paper introduces a novel approach to timber joints design that embed both fabrication and assembly considerations within the same model to avoid mistakes that might cause delays and further expenses. We developed a workflow that allows us to identify the fundamental data to describe a given joint geometry, machine-independent fabrication procedures, and the assembly sequence. Based on this, we introduce a comprehensive descriptive language called Joint Descriptive Model (JDM) that leverages industry standards to convert a joint into a usable output for both fabrication and assembly simulations. Finally, we suggest a seed of a joint’s library with some common joints.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_263
id ecaade2021_263
authors Azadi, Shervin and Nourian, Pirouz
year 2021
title GoDesign - A modular generative design framework for mass-customization and optimization in architectural design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 285-294
doi https://doi.org/10.52842/conf.ecaade.2021.1.285
summary We present a modular generative design framework for design processes in the built environment that provides for the unification of participatory design and optimization to achieve mass-customization and evidence-based design. The paper articulates this framework mathematically as three meta procedures framing the typical design problems as multi-dimensional, multi-criteria, multi-actor, and multi-value decision-making problems: 1) space-planning, 2) configuring, and 3) shaping; structured as to the abstraction hierarchy of the chain of decisions in design processes. These formulations allow for applying various problem-solving approaches ranging from mathematical derivation & artificial intelligence to gamified play & score mechanisms and grammatical exploration. The paper presents a general schema of the framework; elaborates on the mathematical formulation of its meta procedures; presents a spectrum of approaches for navigating solution spaces; discusses the specifics of spatial simulations for ex-ante evaluation of design alternatives. The ultimate contribution of this paper is laying the foundation of comprehensive Spatial Decision Support Systems (SDSS) for built environment design processes.
keywords Generative Design; Spatial Configuration; Serious Gaming; Mass Customization; Decision Problems
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_202
id ecaade2021_202
authors Campos, Tatiana, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title The Use of Natural Materials in Additive Manufacturing of Buildings Components - Towards a more sustainable architecture
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 355-364
doi https://doi.org/10.52842/conf.ecaade.2021.1.355
summary The demand for sustainable building materials is currently a major concern of society. It is known that the traditional construction industry requires a high consumption of inorganic materials, which is associated with the excessive production of waste. Thus, this article intends to demonstrate the possibility of using the Additive Manufacturing (AM) technique Paste Extrusion Modeling (PEM) in the production of reusable, biodegradable and recyclable construction systems, using a combination of different natural materials that have created multiple pastes with different additives.Cellulose is a natural material - biodegradable, recyclable and low cost - and its implementation aims to change some aspects of the current state of the construction sector and can have a real impact on the exploration of innovative solutions and more sustainable alternative building systems. The integration of AM techniques, PEM method, supported by computational modelling tools, will allow the definition of a building system and its components. Depending on the material used - natural materials or biomaterials - the constraints and limitations of AM will be considered.
keywords Cellulose; Natural Fibers; Additive Manufacturing; Sustainable Construction
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_039
id caadria2021_039
authors Chen, Jielin, Stouffs, Rudi and Biljecki, Filip
year 2021
title Hierarchical (multi-label) architectural image recognition and classification
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 161-170
doi https://doi.org/10.52842/conf.caadria.2021.1.161
summary The task of architectural image recognition for both architectural functionality and style remains an open challenge. In addition, the paucity of well-organized, large-scale architectural image datasets with specific consideration for the domain of architectural design research has hindered the exploration of these challenging tasks. Drawing upon images from the professional architectural website Archdaily®, and leveraging state-of-the-art deep-learning-based classification models, we explore a hierarchical multi-label classification model as a potential baseline for the task of architectural image classification. The resulting model showcases the potential for innovative architectural discipline-related analyses and demonstrates some heuristic insights for visual feature extraction pertaining to both architectural functionality and architectural style.
keywords image recognition; hierarchical classification; multi-label classification; architectural functionality; style
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia21_270
id acadia21_270
authors Dambrosio, Niccolo; Schlopschnat, Christoph; Zechmeister, Christoph; Rinderspacher, Katja; Duque Estrada, Rebeca; Knippers, Jan; Kannenberg, Fabian; Menges, Achim; Gil Peréz, Marta
year 2021
title Maison Fibre
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 270-279.
doi https://doi.org/10.52842/conf.acadia.2021.270
summary This research demonstrates the development of a hybrid FRP-timber wall and slab system for multi-story structures. Bespoke computational tools and robotic fabrication processes allow for adaptive placement of material according to specific local requirements of the structure thus representing a resource-efficient alternative to established modes of construction. This constitutes a departure from pre-digital, material-intensive building methods, based on isotropic materials towards genuinely digital building systems using lightweight, hybrid composite elements.

Design and fabrication methods build upon previous research on lightweight fiber structures conducted at the University of Stuttgart and expand it towards inhabitable, multi-story building systems. Interdisciplinary design collaboration based on reciprocal computational feedback allows for the concurrent consideration of architectural, structural, fabrication and material constraints. The robotic coreless filament winding process only uses minimal, modular formwork and allows for the efficient production of morphologically differentiated building components.

The research results were demonstrated through Maison Fibre, developed for the 17th Architecture Biennale in Venice. Situated at the Venice Arsenale, the installation is composed of 30 plate like elements and depicts a modular, further extensible scheme. While this first implementation of a hybrid multi-story building system relies on established glass and carbon fiber composites, the methods can be extended towards a wider range of materials ranging from ultra-high-performance mineral fiber systems to renewable natural fibers.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2021_250
id sigradi2021_250
authors Dotta Correa, Sara, Vaz, Carlos Eduardo Verzola, Pizzetti Mariano, Pedro Oscar and Maia, Mirian Aparecida
year 2021
title A Shape Grammar Implementation: The Case of Fishing Villages in Santa Catarina
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 725–736
summary The fishing villages of the Santa Catarina state, in Southern Brazil, have been suffering from a process of transformation that accompanies the replacement of the activities related to artisanal fishing in order to insert the dynamics of tourism. Aiming to preserve the underlying logic responsible for generating these self-built settlements, a shape grammar was elaborated and implemented in a visual programming environment to test its efficiency in reproducing the compositional language of the villages. The method involved the historical context and constructive typologies analysis, which made it possible to extract the corresponding rules regarding the spatial configuration of the corpus. The result emerged as a descriptive grammar, which later was implemented in a parametric modeling environment, algorithms in C# were used to generate the compositions with the aid of computational strategies based on random numbers, stochastic research and object-oriented programming.
keywords Gramática da Forma, Modelagem Paramétrica, Programaçao, Comunidades Pesqueiras
series SIGraDi
email
last changed 2022/05/23 12:11

_id cdrf2021_330
id cdrf2021_330
authors Felix Amtsberg, Caitlin Mueller, and Felix Raspall
year 2021
title Di-terial – Matching Digital Fabrication and Natural Grown Resources for the Development of Resource Efficient Structures
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_30
summary The research presented in this paper focusses on the concept of “Diterial” which aims to merge digital design and fabrication technology with natural materials such as bamboo poles and raw timber. It proposes a digital workflow that uses sensing techniques to gain individual material information of natural, unprocessed construction resources and identify their individual strengths and characteristics and therefore its potential in load-carrying structures. This information is then used to develop bespoke designs and fabrication concepts, bridging the gap between unprocessed material and automated fabrication setups. Two case studies, developed to prove this concept, are described and compared. Both cases focused on the development of spatial structures using node-bar combinations of local resources.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_017
id ecaade2021_017
authors Fukuda, Tomohiro, Nada, Hideki, Fujii, Hiroyuki and Pencreach, Yoann
year 2021
title A Motion Vector Visualization Method on a Virtual Reality Screen - Preventing virtual reality sickness for architectural investigation
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 513-520
doi https://doi.org/10.52842/conf.ecaade.2021.2.513
summary In the age of mass customization, virtual reality (VR) allows users to virtually visualize architecture from any viewpoint they prefer and to examine the design. It is important to evaluate the movement of the virtual camera to guarantee the quality of VR content in addition to preventing VR sickness. The development of rendering methods to visualize the speed of VR cameras has begun. However, the only absolute velocity values are insufficient because the amount of movement of objects close to the camera is large, and that of distant objects is small. Therefore, this research aims to develop a visualization method of relative velocities known as motion vectors on a VR screen. A prototype of a new rendering technique has been implemented and successfully applied to a VR application for design review of a complex building. There are two rendering methods to display a gradient in RGB colors and to give a motion blur effect. This function allows VR creators to understand where in the virtual world VR sickness is likely to occur.
keywords virtual reality; rendering; shader; virtual reality sickness; motion vector; computer-aided architectural design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2022_373
id ecaade2022_373
authors Gatóo, Ana, Koronaki, Antiopi, Chaudary, Abhinav, Gin, Yelda, Shah, Darshil U., Wiegand, Eduardo, Hesselgren, Lars, Ainoura, Midori, Bakker, Ron and Ramage, Michael H.
year 2022
title Unfolding Timber - A future of design
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 57–66
doi https://doi.org/10.52842/conf.ecaade.2022.1.057
summary “Unfolding” is a pavilion comprised of six lightweight structures designed for the London Design Biennale 2021. “UnFolding” examines the potential for using engineered timber with digital tools to produce flexible interiors. The pavilion is folded through kerfing methods into fractal-based structures. Extensive research, testing and sample fabrication to acquire optimal flexibility of different timber members through kerf patterns was accomplished for the project.
keywords Engineered Timber, Unfolding Timber, Flexible Housing, Folding Structures, Timber Pavilion
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia21_100
id acadia21_100
authors Ghandi, Mona; Ismail, Mohamed; Blaisdell, Marcus
year 2021
title Parasympathy
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 100-109.
doi https://doi.org/10.52842/conf.acadia.2021.100
summary Parasympathy is an interactive spatial experience operating as an extension of visitors’ minds. By integrating Artificial Intelligence (AI), wearable technologies, affective computing (Picard 1995; Picard 2003), and neuroscience, this project blurs the lines between the physical, digital, and biological spheres and empowers users’ brains to solicit positive changes from their spaces based on their real-time biophysical reactions and emotions.

The objective is to deploy these technologies in support of the wellbeing of the community especially when related to social matters such as inclusion and social justice in our built environment. Consequently, this project places the users’ emotions at the very center of its space by performing real-time responses to the emotional state of the individuals within the space.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_346
id acadia21_346
authors Gordon, Matthew; Calvo, Roberto Vargas
year 2021
title Digital Deconstruction and Design Strategies from Demolition Waste
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 346-351.
doi https://doi.org/10.52842/conf.acadia.2021.346
summary The project develops pre- and post-demolition digital assessment protocols in order to better inform reclaimed material implementation in new projects. The application of the protocols are demonstrated in a pavilion constructed of reused timber (Figure 1). By facilitating the data capture, analysis, identification, and characterization of available secondary raw materials, and creating database systems for pre- and post-demolition sites, it promotes gains in high quality upcycled materials for new construction projects. Modern reality capture technologies allow for collecting high density and quality Construction and Demolition Waste (CDW) data, presenting the opportunity to also increase the reliability and trust in upcycled materials by data specifically structured to relevant actors.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2021_334
id ecaade2021_334
authors Gosch, Lukas, Jauk, Julian, Vašatko, Hana, Šamec, Elizabeta and Stavric, Milena
year 2021
title ClayKnit - A composite structure of clay and knitted meshes
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 503-510
doi https://doi.org/10.52842/conf.ecaade.2021.2.503
summary In this paper, we will demonstrate a new method of using knitted meshes to act as a formwork and to reinforce thin and hollow spatial clay structures. Currently, ceramic elements in the building industry are formed using extruding, pressing, or casting methods. This new approach can increase the usability of digitally fabricated lightweight elements, by spraying clay onto mass customised knitted meshes. Compared to fabrics that are used to shape concrete as a stay-in-place formwork, knitted meshes are available in various densities and changing patterns. They also offer the possibility to use a non-flexible thread as an elastic mesh. Knitted meshes are formed in a predefined shape by stretching them without the use of elaborate scaffolding. A specific liquid clay mixture is applied by spraying multiple layers onto the mesh by an industrial, six-axis robotic arm to precisely achieve variable wall thicknesses. Due to the complementary qualities of clay, which absorbs compressive forces and the threads, which absorb tensile forces, structures can be designed with a material optimisation scheme. To demonstrate the potential of such composite materials and the building process itself, a 1:1 lightweight module was constructed as an architectural prototype.
keywords Ceramics; Knitted Threads; Digital Fabrication; 6-axis Robotic Arm; Spraying
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2021_211
id sigradi2021_211
authors Gutiérrez, Arturo F., Roig, Jeshua H. and Martínez, Carlos D.
year 2021
title Markets Post Covid-19: Agent-Based Computational Validation Methodology For Urban Interventions On Spontaneous "Informal Street Markets" In Public Spaces
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 265–275
summary The Covid-19 health crisis has turned spontaneous “informal street markets” into dangerous hotspots for the spread of Covid-19 due to the formation of crowds of people. These informal markets are due to a lack of state planning and regulation, a reality that exists throughout Latin America. This research aims to analyse these spaces through a methodology for computational validation that uses an agent-based model (ABM) for the abstraction and simulation of the displacement of people (moving agents) and their behaviour in the spatial configuration of the area (static agents), identifying an aggregated score in each simulation with the purpose of designing urban interventions that reduce the probability of forming crowds. The paper presents the proposed methodology and the ABM with a preliminary validation by simulating two spatial configurations with two hypothetical scenarios (analyses with 10 and 50 agents) and comparing their aggregated scores, showing a correlation between spatial configuration with the formation of crowds.
keywords ABM, simulación espacial, modelo estocástico, diseno computacional, mercados
series SIGraDi
email
last changed 2022/05/23 12:10

_id acadia20_120p
id acadia20_120p
authors Hirth, Kevin
year 2020
title Short Stack
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 120-123
summary Short Stack is a bare minimal structure using only laminated sheets of structural metal decking for all elements of its structure and enclosure. The project operates under a simple principle. Structural metal decking is a one-way system that resists loads well in one direction, but not in the other. When this decking is stacked into rotated sections and tensioned together, the resultant sandwich of corrugated metal is resistant to loading in every direction. These sandwiches become walls, floors, and roofs to a temporary structure. The compounded effect at the edges of the rotated and cropped decking is one of filigree or an ornamental articulation. The sandwich, which is mostly hollow due to the section of the decking, provides a sense of airy lightness that is at odds with its bulky mass. The structure, therefore, teeters between being unexpectedly open and at once heavy. The economy of the project is in its uniformity and persistent singularity. By maintaining a single palette of material and using a plasma cutting CNC bed to cut each section of the decking, the structure is simply assembled. The digital intelligence that lies underneath the apparent formal simplicity of the project is two-fold. Firstly, each sheet of metal decking is different from the next. Because of the locations of bolt-holes and constant variability of rotation and cropping of each sheet, it is a project that expresses uniformity rather than articulation through discretization. Secondly, the project appears solid and monolithic but is hollowed structurally to minimize the weight of the assembly. Parametric tools are implemented to maximize material efficiencies by hollowing the interior of each sandwich for load optimization. The project is presently in prototyping and documentation and will go into construction in Spring 2021 on a site in downtown Denver.
series ACADIA
type project
email
last changed 2021/10/26 08:03

_id ascaad2021_114
id ascaad2021_114
authors Houda, Maryam
year 2021
title Materiality: Linking a Digital Material Framework with the Anthropological Hand
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 568-580
summary While computers and digital technology have evolved over the years and are changing the way we design and construct, some have criticized the way in which human tactility and intuition with material has diminished at the cost of increasing productivity and efficiency. Although the digital culture that architecture is engaged with today has brought about complex forms that could not have been possible by hand, there is a rising question of the place of craft and a hand-brain coordination in design, and the notion of learning through making. This paper explores the benefits and limitations of digital design tools in light of physically exploring building materials and gaining tactile intuition. While digital tools investigate structural optimisation methods using a parametric design workflow, physical experiments deal with understanding the transitional state of mud and its dynamic properties. This research is interested in how information is learnt from materiality during the physical act of making and what tactile experimentation can offer that the digital space cannot. Three key areas are explored: geometry and parametric variation, material properties and morphogenic behavior, as well as structural optimization methods using density grids. Force-matter relations are investigated through exploring material parameters through digital and physical form-finding processes as a way of exploring the notion of re-introducing the hand and craft in the design process which may bring about novel ways of thinking and doing.
series ASCAAD
email
last changed 2021/08/09 13:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_545641 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002