CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id caadria2021_005
id caadria2021_005
authors Bedarf, Patrick, Martinez Schulte, Dinorah, Şenol, Ayça, Jeoffroy, Etienne and Dillenburger, Benjamin
year 2021
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Facade Shading Panel
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 603-612
doi https://doi.org/10.52842/conf.caadria.2021.1.603
summary This paper presents the design and fabrication of a lightweight composite facade shading panel using 3D printing (3DP) of mineral foams. Albeit their important role in industrial construction practice as insulators and lightweight materials, only little research has been conducted to use foams in 3DP. However, the recent development of highly porous mineral foams that are very suitable for extrusion printing opens a new chapter for development of geometrically complex lightweight building components with efficient formwork-free additive manufacturing processes. The work documented in this paper was based on preliminary material and fabrication development of a larger research endeavor and systematically explored designs for small interlocking foam modules. Furthermore, the robotic 3D Printing setup and subsequent processing parameters were tested in detail. Through extensive prototyping, the design space of a final demonstrator shading panel was mapped and refined. The design and fabrication process is documented and shows the potential of the novel material system in combination with fiber-reinforced ultra-high performance concrete (UHPC). The resulting composite shading panel highlights the benefits of using mineral foam 3DP to fabricate freeform stay-in-place formwork for lightweight facade applications. Furthermore, this paper discusses the challenges and limitations encountered during the project and gives a conclusive outlook for future research.
keywords robotic 3d-printing; mineral foam; lightweight construction; concrete formwork; facade shading panel
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_007
id ascaad2021_007
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Developing a Design Framework for the 3D Printing Production of Concrete Building Components: A Case Study on Column Optimization for Efficient Housing Solutions in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 713-726
summary This paper is examining the development of a design and fabrication framework aiming to increase the efficiency of the construction of concrete building components by introducing 3D concrete printing in the context of Saudi Arabia. In particular, we will present an algorithmic process focusing on the design and fabrication of a typical, mass customised, single-family house, which incorporates parametric modelling, topology optimisation, finite element (FE) analysis and robotic 3D printing techniques. We will test and verify our framework by designing and fabricating a loadbearing concrete column with structural and material properties defined by the Saudi Building Code of Construction. Our findings are highlighting the advantages and challenges of the proposed file-to-factory framework in comparison to the conventional construction methods currently applied in Saudi Arabia, or other similar sociopolitical contexts. By comparing the material usage in both conventional and optimised columns, the results have shown that material consumption has been reduced by 25%, the required labour in the construction site has been mitigated by 28 and the duration time has been reduced by 80% without the need for formwork.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_329
id caadria2021_329
authors Breseghello, Luca, Sanin, Sandro and Naboni, Roberto
year 2021
title Toolpath Simulation,Design and Manipulation in Robotic 3D Concrete Printing
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632
doi https://doi.org/10.52842/conf.caadria.2021.1.623
summary Digital fabrication is blurring the boundaries between design, manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic. manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic."
keywords 3D Concrete Printing; Robotic Fabrication; Additive Manufacturing; Toolpath Simulation; Toolpath Manipulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_400
id acadia21_400
authors Bruce, Mackenzie; Clune, Gabrielle; Xie, Ruxin; Mozaffari, Salma; Adel, Arash
year 2021
title Cocoon: 3D Printed Clay Formwork for Concrete Casting
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 400-409.
doi https://doi.org/10.52842/conf.acadia.2021.400
summary Concrete, a material widely used in the construction industry today for its low cost and considerable strength as a composite building material, allows designers to work with nearly any form imaginable; if the technology to build the formwork is possible. By combining two historic and widely used materials, clay and concrete, our proposed novel process, Cocoon, integrates robotic clay three-dimensional (3D) printing as the primary formwork and incrementally casting concrete into this formwork to fabricate nonstandard concrete elements. The incremental casting and printing process anchors the concrete and clay together, creating a symbiotic and harmonious relationship. The concrete’s fluidity takes shape from the 3D printed clay formwork, allowing the clay to gain structure from the concrete as it cures. As the clay loses moisture, the formwork begins to shrink, crack, and reveal the concrete below. This self-demolding process produces easily removable formwork that can then be recycled by adding water to rehydrate the clay creating a nearly zero-waste formwork. This technique outlines multiple novel design features for complex concrete structures, including extended height limit, integrated void space design, tolerable overhang, and practical solutions for clay deformation caused by the physical stress during the casting process. The novelty of the process created by 3D printing clay formwork using an industrial robotic arm allows for rapid and scalable production of nearly zero-waste customizable formwork. More significant research implications can impact the construction industry, integrating more sustainable ways to build, enabled by digital fabrication technologies.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_333
id ecaade2021_333
authors Burger, Joris, Wangler, Timothy, Chiu, Yu-Hung, Techathuvanun, Chanon, Gramazio, Fabio, Kohler, Matthias and Lloret-Fritschi, Ena
year 2021
title Material-informed Formwork Geometry - The effects of cross-sectional variation and patterns on the strength of 3D printed eggshell formworks
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 199-208
doi https://doi.org/10.52842/conf.ecaade.2021.2.199
summary Fused deposition modelling (FDM) 3D printing of formworks for concrete has the potential to increase geometric freedom in concrete construction. However, one major limitation of FDM printed formworks is that they are fragile and often cannot support the hydrostatic pressure exerted by the concrete. The research project 'Eggshell' combines robotic 3D printing of formwork with the casting of a fast-hardening concrete to reduce hydrostatic pressure to a minimum. Eggshell can be used to fabricate architectural-scale building components; however, knowledge of the influence formwork geometry has on the hydrostatic pressure resistance is still sparse, resulting in unexpected breakages of the formwork. This paper presents an empirical study into the breakage behaviour of FDM printed formworks when subjected to hydrostatic pressure. Firstly, the study aims to give a first insight into the breakage behaviour of formworks with a constant cross-section by casting a self-compacting concrete into the formwork until breakage. Then, we investigate if three-dimensional patterning of the formwork can have a beneficial effect on the breakage behaviour. Finally, the preliminary results are validated through the fabrication of two full-scale columns. The empirical results point towards the fact that sharp corners in formworks are weaker compared to rounded corners. Although the presented results are still preliminary, they mark an important step in the development of reliable design and fabrication strategies using 3D printed formworks.
keywords 3D Printing; Formwork; Fused Deposition Modelling; Digital Concrete; Hydrostatic pressure; Eggshell
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_282
id caadria2021_282
authors Jauk, Julian, Vašatko, Hana, Gosch, Lukas, Christian, Ingolf, Klaus, Anita and Stavric, Milena
year 2021
title Digital Fabrication of Growth - Combining digital manufacturing of clay with natural growth of mycelium
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 753-762
doi https://doi.org/10.52842/conf.caadria.2021.1.753
summary In this paper we will demonstrate that a digital workflow and a living material such as mycelium, make the creation of smart structural designs possible. Ceramics industries are not as technically advanced in terms of digital fabrication, as the concrete or steel industries are. At the same time, bio-based materials that use growth as a manufacturing method, are often lacking in basic research. Our interdisciplinary research combines digital manufacturing - allowing a controlled material distribution, with the use of mycelial growth - enabling fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and observations of growth. In this manner the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. The composite named 'MyCera' has exhibited structural properties that open up the possibility of its implementation in the building industry. In this context it allows the design and efficient manufacturing of lightweight ceramic constructions customized to this composite, which would not have been possible using conventional ceramics fabrication methods.
keywords Mycelium; Clay; 3D Printing; Growth; Bio-welding
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2021_027
id caadria2021_027
authors Lu, Ming, Zhou, Yifan, Wang, Xiang and Yuan, Philip F.
year 2021
title An optimization method for large-scale 3D printing - Generate external axis motion using Fourier series
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 683-692
doi https://doi.org/10.52842/conf.caadria.2021.1.683
summary With the increase in labor costs, more and more robot constructions appear in building construction and spatial structure fabrication. There are many robots working on large-scale objects. When the reach range of the robot cannot meet the requirements, so an external axis is needed. The external axis is usually a linear motion device, which can significantly increase the operating range of the robotic arm. In actual construction, it is also widely used. This article introduces a 3d printing coffee bar project. Because this project is of a large scale and needs to be printed at one time, the XYZ external axis was used in this project to complete the task. Inspired by this project, this article study several methods of optimizing the motion of external axes in large-scale construction. Finally, we chose to use the Fourier series as the most suitable method to optimize the printing path and programed this method as a component of FUROBOT for more convenient use. This article explains the principle of this method in detail. Finally, this article uses a 3D printing example to illustrate the precautions in actual use.
keywords robotics; motion optimize; Fourier series; 3D printing; external axis
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia21_410
id acadia21_410
authors Meibodi, Mania Aghaei; Craney, Ryan; McGee, Wes
year 2021
title Robotic Pellet Extrusion: 3D Printing and Integral Computational Design
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 410-419.
doi https://doi.org/10.52842/conf.acadia.2021.410
summary 3D printing offers significant geometric freedom and allows the fabrication of integral parts. This research showcases how robotic fused deposition modeling (FDM) enables the prefabrication of large-scale, lightweight, and ready-to-cast freeform formwork to minimize material waste, labor, and errors in the construction process while increasing the speed of production and economic viability of casting non-standard concrete elements. This is achieved through the development of a digital design-to-production workflow for concrete formwork. All functions that are needed in the final product, an integrally insulated steel-reinforced concrete wall, and the process for a successful cast, are fully integrated into the formwork system. A parametric model for integrated structural ribbing is developed and verified using finite element analysis. A case study is presented which showcases the fully integrated system in the production of a 2.4 m tall x 2.0 m curved concrete wall. This research demonstrates the potential for large-scale additive manufacturing to enable the efficient production of non-standard concrete formwork.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_305
id cdrf2021_305
authors Mette Ramsgaard Thomsen, Martin Tamke1, Aurelie Mosse, Jakob Sieder-Semlitsch, Hanae Bradshaw, Emil Fabritius Buchwald, and Maria Mosshammer
year 2021
title Imprimer La Lumiere – 3D Printing Bioluminescence for Architectural Materiality
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_28
summary ‘Imprimer la Lumi?re’ examines the making of a bioluminescent micro architecture. The project positions itself inside a sustainability agenda. By exploring the use of light-emitting bacteria as a material for architecture it asks what are the concepts, methods and technologies needed for designing with living materials. The project devises new means by which to design with the luminescent vibrio fischeri bacteria in a 3D printing manufacturing process based on extrusion principles. By combining the study of these living organisms and their appropriation through advanced robot-controlled 3D printing technologies, we establish a conceptual, material and technological framework for a bio-controlled bacteria growth and 3D extrusion process and a printable material based on agarose and gelatine.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_040
id ecaade2021_040
authors Zhan, Qiang, Wu, Hao, Zhang, Liming, Yuan, Philip F. and Gao, Tianyi
year 2021
title 3D Concrete Printing with Variable Width Filament
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 153-160
doi https://doi.org/10.52842/conf.ecaade.2021.2.153
summary Traditional mold-based concrete construction methods are inefficient, poor quality, and labor-intensive. Concrete 3D printing technology is expected to replace traditional methods as an emerging intelligent construction method due to its flexible, automatic, fast, and mold-free features. Concrete 3D printing is a method by extruding and selectively laminating construction materials onto a specific path, relying on fine-grained control of the printing material and the printing device. However, the maximum printing resolution is limited by the width of the toolpath. Filament width and printing resolution are two main factors that need to balance. In this paper, a variable width printing method is proposed using the active nozzle speed control method. The width of the print path can be adjusted according to the model details. A width control algorithm is proposed. The general workflow of variable width printing, including model preparation, toolpath planning, robotic fabrication, is also introduced, and a concrete bench is printed for experimental validation. The result shows great application potential for surface decoration and structural reinforcement. The efficiency, feasibility, and problems encountered in printing are analyzed and summarized.
keywords 3D concrete printing; variable filament width; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_133
id caadria2021_133
authors Zhan, Qiang, Zhou, Xinjie and Yuan, Philip F.
year 2021
title Digital Design and Fabrication of a 3D Concrete Printed Prestressed Bridge
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 663-672
doi https://doi.org/10.52842/conf.caadria.2021.1.663
summary In recent years, additive manufacturing and 3D printing technologies have been increasingly used in the field of construction engineering. 3D Concrete printing is a kind of laminated printing method using concrete extrusion technique. Concrete has the advantages of high compressive strength, low deformation, and excellent durability, and has high application value in the construction field. However, as a brittle material, concrete has limited tensile and flexural strength. For beam like components, it is difficult to fully exert the compressive performance of the material relying solely on itself, so it is difficult to apply to the bending member. The experimental case introduced in this paper combined the prestressing system with concrete printing technology. A post-tensioning prestressing system suitable for prefabricated concrete 3D printing components, which combined the excellent tensile properties of steel bars with the compressive performance of the 3D concrete printed part was proposed.
keywords 3D concrete printing; Prestressed concrete; robotic fabrication; structural optimization
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2021_047
id ecaade2021_047
authors Zhang, Xiao, Yuan, Chao, Yang, Liu, Yu, Peiran, Ma, Yiwen, Qiu, Song, Guo, Zhe and Yuan, Philip F.
year 2021
title Design and Fabrication of Formwork for Shell Structures Based on 3D-printing Technology
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 487-496
doi https://doi.org/10.52842/conf.ecaade.2021.1.487
summary Shell structure is a kind of structure using a small amount of materials to obtain a large-span multi-functional space. However, lots of formwork and scaffold materials are often wasted in the construction process. This paper focuses on the shell structure construction using robotic 3D printing PLA (an environmental friendly material) technology as the background. The author explores the possibility of 3D printing technology in shell construction from small scale models in different construction method, and gradually optimizes the shell template shape suitable for PLA material in full-scale construction. Finally, the research team chose the bending-active 3D printing type and completed the construction of three full-scale concrete shell molds. Under the guidance of professor Philippe Block, the research team finished the final 3D printing mold with optimized slicing and bending logic and successfully used it as the template mold to carry the tiles which proved the feasibility of this construction method.
keywords Shell structure ; Formwork ; Geometric analysis; Form-finding; 3d printing
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
doi https://doi.org/10.52842/conf.caadria.2021.1.743
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2021_008
id ascaad2021_008
authors Alabbasi, Mohammad; Han-Mei Chen, Asterios Agkathidis
year 2021
title Assessing the Effectivity of Additive Manufacturing Techniques for the Production of Building Components: Implementing Innovation for Housing Construction in Saudi Arabia
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 214-226
summary This paper examines the suitability of existing robotic technologies and large-scale 3D printing techniques for the fabrication of three-dimensional printed building components to be applied in the Saudi housing construction industry. The paper assesses a series of cases based on the applications for 3D-printing cement-based materials in construction. In particular, we investigate five different additive manufacturing techniques and evaluate their performance in terms of their flexibility/mechanism, control/navigation, calibration/operation system, fabrication suitability (in-situ or off-site), size of printed components, printing speed. The findings include in a matrix chart, where the advantages and disadvantages of each technique become evident. The paper further evaluates the suitability of each technique in relation to the particular climatical and socio-political context of Saudi Arabia, applicable to other construction industries with similar conditions.
series ASCAAD
email
last changed 2021/08/09 13:11

_id cdrf2021_368
id cdrf2021_368
authors B. Bala Murali Kumar, Yun Chung Hsueh, Zhuoyang Xin, and Dan Luo
year 2021
title Process and Evaluation of Automated Robotic Fabrication System for In-Situ Structure Confinement
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_34
summary The additive manufacturing process is gaining momentum in the construction industry with the rapid progression of large-scale 3D printed technologies. An established method of increasing the structural performance of concrete is by wrapping it with Fibre Reinforced Polymer (FRP). This paper proposes a novel additive process to fabricate a FRP formwork by dynamic layer winding of the FRP fabric with epoxy resin paired with an industrial scale robotic arm. A range of prototypes were fabricated to explore and study the fabrication parameters. Based on the systemic exploration, the limitations, the scope, and the feasibility of the proposed additive manufacturing method is studied for large scale customisable structural formworks.
series cdrf
email
last changed 2022/09/29 07:53

_id ijac202119405
id ijac202119405
authors Cohen, Zach
year 2021
title Building sympathy: Waiting-with digital fabrication machines as a form of architectural labor
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 553–567
summary Many digital fabrication machines have potential dangers, for example, sudden fires or projectile debris; thus, architects are generally required to supervise these machines when they employ them to make things. It is unlikely that further mechanization will ever completely eliminate such dangers since they result from unpredictable material processes. Therefore, as digital fabrication machines proliferate throughout architecture schools and practices, architects will find themselves spending increasingly more time supervising them, and waiting. In this paper, I argue that architects should then not only embrace waiting-with digital fabrication machines as a new form of architectural labor, but also begin to explore the ways in which such waiting can be productive. I begin with a critique of many architects’ impatience with digital fabrication processes. I then use the continental philosopher Henri Bergson’s concept of “intuition” to discuss the productive potential of waiting-with. Finally, I use a speculative 3D printing workflow to present additional creative possibilities that can arise if architects intentionally build waiting into digital fabrication processes.
keywords Theory, labor, automation, time, 3D printing, sympathy, digital fabrication
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_142
id caadria2021_142
authors Cruz Gambardella, Camilo and McCormack, Jon
year 2021
title Searching for designs in-between - Exploration of design space using a 3D printing-inspired evolutionary system.
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 111-120
doi https://doi.org/10.52842/conf.caadria.2021.1.111
summary The use of evolutionary methods in design and art is increasing in diversity and popularity. Approaches to using these methods for creative production typically focus either on optimisation or exploration. In this paper we introduce an evolutionary system for design that combines these two approaches, enabling users to explore landscapes of design alternatives using design-oriented measures of fitness, along with their own aesthetic preferences. We test our methods using a biologically-inspired generative system capable of producing 3D objects that can be exported directly as 3D printing toolpath instructions. For the search stage of our system we combine the use of the CMA-ES algorithm for optimisation and linear interpolation between generated objects for feature exploration. We investigate the systems capabilities by evolving highly fit artefacts and then combining them with aesthetically interesting ones.
keywords Generative Design; Evolutionary Design; 3D Printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_88
id sigradi2021_88
authors Evrim, Berfin
year 2021
title Hybrid Carbon Fiber and Jute Fiber Textile Bone Stool: Integrative Fabrication Method of Weaving and 3D Printing
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 629–641
summary The structural properties of Fiber Reinforced Polymers (FRP) encourage designers and architects to use textiles as a load-bearing architectural material to create lightweight and strong structures. Manufacturing techniques of FRPs are mostly concentrated on the molding method. This method requires an extra mold fabrication that causes waste of material. This study focuses on integrative weaving and 3D printing fabrication methods, which emphasize the lightweight property of the material. This integrative method avoids excessive material waste during fabrication by using an additive approach. 3D printing on textiles prevents significant deformation in a specific direction of the fabric instead of using any kind of synthetic resin for stiffening the fabric. Additionally, structural behavior simulation allows designers to understand the different loading conditions and maximize the strengths of each textile design by adding more material where it is needed for possible architectural applications.
keywords Stool Design, Bone Analysis, Textile Load Simulation, Weaving, 3D Printing
series SIGraDi
email
last changed 2022/05/23 12:11

_id ijac202119407
id ijac202119407
authors Haeusler, Matthias H.; Gardner, Nicole; Yu, Daniel K.; Oh, Claire; Huang, Blair
year 2021
title (Computationally) designing out waste: Developing a computational design workflow for minimising construction and demolition waste in early-stage architectural design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 4, 594–611
summary In the architecture, engineering and construction (AEC) industry, waste is oft framed as an economic problemtypically addressed in a building’s construction and demolition phase. Yet, architectural design decision-making can significantly determine construction waste outcomes. Following the logic of zero waste, thisresearch addresses waste minimisation‘at the source’. By resituating the problem of construction wastewithin the architectural design process, the research explores waste as a data and informational problem in adesign system. Accordingly, this article outlines the creation of an integrated computational design decisionsupport waste tool that employs a novel data structure combining HTML-scraped material data and historicbuilding information modelling (BIM) data to generate waste evaluations in a browser-based 3D modellingplatform. Designing an accessible construction waste tool for use by architects and designers aims to heightenawareness of the waste implications of design decisions towards challenging the systems of consumption andproduction that generate construction and demolition waste.
keywords Construction and demolition waste, waste minimisation, zero waste, BIM databases, design process, designmanagement, web scraping, computational design, software product development
series journal
email
last changed 2024/04/17 14:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_856937 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002