CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 6 of 6

_id ecaade2021_131
id ecaade2021_131
authors Körner, Andreas
year 2021
title Thermochromic Animation - Thermally-informed and colour-changing surface-configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.453
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 453-462
summary All factors of thermal comfort are invisible to humans and do not (yet) impact visual navigation in the built environment. Thermochromic materials change their colour relative to temperature. In architecture, their applications as responsive ornaments and as intelligent composite systems are discussed. Nonetheless, design research on their use together with computational design is scarce. This study investigates thermochromics concerning architectural surfaces. Design and material experiments were conducted to test the hypothesis that thermochromic animation can be configured to visualise invisible parameters of thermal comfort. Scale prototypes were fabricated from different materials and coated with thermochromics. They varied in layer number and sub-coatings. The colour change was observed with several instruments. Heat transfer simulations of digital doppelgangers accompanied the physical experiments. The results suggest that this method can be used to configure thermochromic animation. This can be implemented into a procedural design model for porous and multi-layered thermochromic surfaces in the future. In this, digital simulation and material-based design are combined in a method that advances the use of thermochromic materials in the context of digital architectural design.
keywords thermochromics; fabrication; simulation; materials; colour
series eCAADe
email
last changed 2022/06/07 07:52

_id cdrf2021_211
id cdrf2021_211
authors Marcus Farr, Andrea Macruz, and Alexandre Ulson
year 2021
title Material Response: Technology, Material Systems and Responsive Design
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_20
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary This paper investigates the role technology and materials play in making meaningful connections between people, architectural space and the workplace. It indicates that design can synergize with responsive technology and material systems to leverage new power for future workplace interaction design. We have created a spatial prototype paired with a series of simulations that act as a proposal to stimulate workplace interaction. The project employs a responsive ceiling that combines a fluid computational pattern with temperature-responsive bi-material laminates with thermochromic coatings and electrically programmed micro-controllers. The project is then connected to a computer code that computes readings based upon ongoing interactions with humans wearing body sensors. The methodology categorizes the simulation results into aroused states and calm states. As the computational patterns and colors change, we are made aware of the relationships between space, technology, and the human sensorium. This conversation brings insight into how we can design more effectively for workplace interactions.
series cdrf
email
last changed 2022/09/29 07:53

_id ijac202119205
id ijac202119205
authors Fukuda, Tomohiro; Marcos Novak, Hiroyuki Fujii, Yoann Pencreach
year 2021
title Virtual reality rendering methods for training deep learning, analysing landscapes, and preventing virtual reality sickness
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 190–207
summary Virtual reality (VR) has been proposed for various purposes such as design studies, presentation, simulation and communication in the field of computer-aided architectural design. This paper explores new roles for VR; in particular, we propose rendering methods that consist of post-processing rendering, segmentation rendering and shadow-casting rendering for more-versatile approaches in the use of data. We focus on the creation of a dataset of annotated images, composed of paired foreground-background and semantic-relevant images, in addition to traditional immersive rendering for training deep learning neural networks and analysing landscapes. We also develop a camera velocity rendering method using a customised segmentation rendering technique that calculates the linear and angular velocities of the virtual camera within the VR space at each frame and overlays a colour on the screen according to the velocity value. Using this velocity information, developers of VR applications can improve the animation path within the VR space and prevent VR sickness. We successfully applied the developed methods to urban design and a design project for a building complex. In conclusion, the proposed method was evaluated to be both feasible and effective.
keywords Virtual reality, rendering, shader, deep learning, landscape analytics, virtual reality sickness, Fourth Industrial Revolution, computer-aided architectural design
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_132
id caadria2021_132
authors Nodado, Cheska Daclag, Yogiaman, Christine and Tracy, Kenneth
year 2021
title Towards Wind-Induced Architectural Systematization - Demonstrating the Collective Behaviour of Urban Blocks as a Design Asset
doi https://doi.org/10.52842/conf.caadria.2021.2.447
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 447-456
summary This paper presents the premise of collective behaviour of singular units as a design asset in an urban environment. The collaborative effect of building shapes, surface texture and the order of buildings on wind patterns in the urban were explored and analysed. The results revealed that these three factors are imperative to effectively design airflow and air velocity to create cooling effects in warm urban environments. This study intends to solve the problem of compact building blocks which create stagnant air in outdoor urban spaces that worsens outdoor urban thermal comfort. As the study involves a large scale urban area which requires tremendous simulation time, this paper would also demonstrate an attempt for an alternative workflow in studying computational fluid dynamic (CFD) through utilizing Houdini, which is an animation software to predict wind flow patterns in an urban context in a faster way which is highly beneficial for conceptual design stage. The paper explains the setup of Houdini working interface which enables the researcher to compare simulation results of varying models with ease via the switch button, and further improve simulation speed by disabling the need of remeshing the original model.
keywords collaborative behaviour; urban blocks; wind pattern; computational fluid dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2021_127
id ascaad2021_127
authors Poustinchi, Ebrahim
year 2021
title A Grasshopper Plug-In for Designing Virtual Camera Path in Rhino 3D using Cellphone Motion: Chameleon
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 636-644
summary Chameleon is a workflow plug-in for Grasshopper 3D that enables designers/users to design camera paths and orientation for animation and still rendering, using cellphone position and orientation. Working as a bridge between the physical world and the digital design environment of Rhino 3D, users using Chameleons, can develop animated and still frames from the first-person point of view with realistic walk-through motions/angles. Although this feature is available in animation software platforms, Chameleon aims to unlock this possibility in Rhino 3D environment and the most used design software for three-dimensional modeling. This new workflow also provokes new means and methods for creative interaction with design software, beyond the existing hardware interfaces such as keyboard and mouse.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_045
id ascaad2021_045
authors Soulikias, Aristofanis; Carmela Cucuzzella, Firdous Nizar, Morteza Hazbei, Sherif Goubran
year 2021
title We Gain a Lot…But What are We Losing? A Critical Exploration of the Implications of Digital Design Technologies on Sustainable Architecture
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 293-305
summary In the field of architecture, new technologies are enabling us to promptly simulate, quantify, and compare multitudes of design alternatives and consider an ever more expanding list of environmental and economic parameters within the early design phases of projects. However, architecture today veers further towards non-neutral technologies, changing our culture, introducing new values, and (re)shaping our social ideals. The change of media, from the manual to the digital, has deeply transformed architecture and city design. There is undoubtedly progress, but what are we losing in this automation, virtualization and over-digitalization? Are architects—creators of space, human experience, and cultural capital—starting to occupy the role of technicians? Sustainable architecture is a field that is already experiencing tensions between the quantitative and the qualitative, the optimum and the ethical, and the parametric and haptic methods. Yet the rapidly evolving CAAD technologies overlook many of the non-quantifiable values of these binaries. Gains in speed and efficiency in the design process with the help of parametric design may be challenging the designer’s reflection-in-action process required for critical architecture while ethical, cultural, and human dimensions can hardly be modelled algorithmically. Similarly, computational thinking and digitalization in architectural education, have yet to come to terms with the loss of analogue ways of learning that favour a more diverse and inclusive classroom environment. Instead of keeping the analogue and the haptic practices away from the immaculate realm of CAAD, this paper argues for hybrid technologies that recognize these practices and their value in sustainable design and incorporate them. Film animation, as a branch of architecture’s most expressive means, film, can serve as a paradigm of a feasible disruptive technology, but most importantly, as an indicator of the hybridity between the handmade and the digital and its effectiveness in expressing vital elements of sustainability that are otherwise dismissed.
series ASCAAD
email
last changed 2021/08/09 13:11

No more hits.

HOMELOGIN (you are user _anon_905600 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002