CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 540

_id ijac202119106
id ijac202119106
authors Del Campo, Matias; Alexandra Carlson, and Sandra Manninger
year 2021
title Towards Hallucinating Machines - Designing with Computational Vision
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 88–103
summary There are particular similarities in how machines learn about the nature of their environment, and how humans learn to process visual stimuli. Machine Learning (ML), more specifically Deep Neural network algorithms rely on expansive image databases and various training methods (supervised, unsupervised) to “make sense” out of the content of an image. Take for example how students of architecture learn to differentiate various architectural styles. Whether this be to differentiate between Gothic, Baroque or Modern Architecture, students are exposed to hundreds, or even thousands of images of the respective styles, while being trained by faculty to be able to differentiate between those styles. A reversal of the process, striving to produce imagery, instead of reading it and understanding its content, allows machine vision techniques to be utilized as a design methodology that profoundly interrogates aspects of agency and authorship in the presence of Artificial Intelligence in architecture design. This notion forms part of a larger conversation on the nature of human ingenuity operating within a posthuman design ecology. The inherent ability of Neural Networks to process large databases opens up the opportunity to sift through the enormous repositories of imagery generated by the architecture discipline through the ages in order to find novel and bespoke solutions to architectural problems. This article strives to demystify the romantic idea of individual artistic design choices in architecture by providing a glimpse under the hood of the inner workings of Neural Network processes, and thus the extent of their ability to inform architectural design.The approach takes cues from the language and methods employed by experts in Deep Learning such as Hallucinations, Dreaming, Style Transfer and Vision. The presented approach is the base for an in-depth exploration of its meaning as a cultural technique within the discipline. Culture in the extent of this article pertains to ideas such as the differentiation between symbolic and material cultures, in which symbols are defined as the common denominator of a specific group of people.1 The understanding and exchange of symbolic values is inherently connected to language and code, which ultimately form the ingrained texture of any form of coded environment, including the coded structure of Neural Networks.A first proof of concept project was devised by the authors in the form of the Robot Garden. What makes the Robot Garden a distinctively novel project is the motion from a purely two dimensional approach to designing with the aid of Neural Networks, to the exploration of 2D to 3D Neural Style Transfer methods in the design process.
keywords Artificial intelligence, design agency, neural networks, machine learning, machine vision
series journal
email
last changed 2021/06/03 23:29

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
doi https://doi.org/10.52842/conf.caadria.2021.1
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
doi https://doi.org/10.52842/conf.caadria.2021.2
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ecaade2021_225
id ecaade2021_225
authors Anishchenko, Maria and Paoletti, Ingrid
year 2021
title Yarn-Level Modeling of Non-Uniform Knitted Fabric for Digital Analysis of Textile Characteristics - From a bitmap to the yarn-level model
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 253-262
doi https://doi.org/10.52842/conf.ecaade.2021.1.253
summary Modern CNC weft knitting machines are capable to produce textiles with complex non-uniform structures and shapes in a single operation with minimum human intervention. The type of knit structure and the settings of the knitting machine significantly influence the fabric characteristics and its role in architectural comfort. However, there is still no open-access tool for fast and efficient analysis of textiles with consideration of their knit structure, especially if they are knitted non-uniformly. Moreover, the existing methodologies of digital modeling of the knit structure are not linked to the actual production of textiles on flat-bed knitting machines. This paper presents a tool that "reads" a bitmap image that can be as well imported into a knitting machine software and generates a yarn-level geometry of the knitted textiles, that can be further integrated into the behavior analysis software within the rhino-grasshopper environment. This methodology helps to preview and analyze knitted textiles before production and can help to optimize the programming of bespoke knitted textiles for large-scale architectural applications.
keywords knitting; computational knitting; digital simulation; textile characteristics; textiles for architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_088
id caadria2021_088
authors Batalle Garcia, Anna, Cebeci, Irem Yagmur, Vargas Calvo, Roberto and Gordon, Matthew
year 2021
title Material (data) Intelligence - Towards a Circular Building Environment
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 361-370
doi https://doi.org/10.52842/conf.caadria.2021.1.361
summary The integration of repurposed material in new construction products generates resiliency strategies that diminish the dependency on raw resources and reduce the CO2 emissions produced by their extraction, transportation, and manufacturing. This research emphasizes the need to expand preliminary data collation from pre-demolition sites to inform early design decisions. Material (data) Intelligence investigates how the merging of artificial intelligence and data analysis could have a crucial impact on achieving widespread material reuse. The first step consists of automating the process of detecting materials and construction elements from pre-demolition sites through drone photography and computer vision. The second part of the research links the resulting database with a computational design tool that can be integrated into construction software. This paper strengthens the potential of circular material flows in a digital paradigm and exposes the capability for constructing big data sets of reusable materials, digitally available, for sharing and organizing material harvesting.
keywords computer vision; material database; automation; reclaimed material; digitalization
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_114
id ecaade2021_114
authors Hadighi, Mahyar
year 2021
title Towards a Configurable Hybridity in Historic Preservation and Design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 293-302
doi https://doi.org/10.52842/conf.ecaade.2021.2.293
summary This paper fulfills the dual purpose of developing a systematic methodology for designing new constructions and adding to or revivifying existing buildings in historic neighborhoods and demonstrating an effective pedagogy in regard to historic preservation at the undergraduate level. A previously developed methodology for verifying and analyzing hybridity in architectural design is expanded as a foundation for designing an addition to a historic building in a famous urban context, i.e., a registered historic structure in the museum district of New York City. Shape grammar as a computational design methodology is used to analyze the historic fabric of the urban area and to create a configurable hybrid design that is both compatible with that context and reflective of the needs and design of the contemporary urban setting. The validity of shape grammar as a methodology for designing configurable hybrid constructions in historic neighborhoods and its effectiveness in relation to a teaching focus on historic preservation are considered through an analysis of projects from an upper-undergraduate-level architectural design studio. The students used the shape grammar methodology to analyze and understand historic contexts and features in order to generate new designs for the given context.
keywords Configurable hybridity; Historic preservation ; Shape grammar; Neue Galerie; Vienna Secession
series eCAADe
email
last changed 2022/06/07 07:49

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_234
id sigradi2021_234
authors Al Nouri, Mhd Ziwar, Baghdadi, Bilal and Khateeb, Nairooz
year 2021
title Re-coding Post-War Syria: The Role of Data Collection & Objective Investigations in PostWar Smart City
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 127–145
summary Re-coding post-war Syria is an ongoing research and data platform, focused on innovation and collecting comprehensive, infrastructural and socioeconomic analytics, synchronization data, by using AI driven to give a more transparent image of innovating a new methodology to regenerate the future of post-war smart cities into advanced and sustainable urban environments in a smarter way (Fig. 1). The pressure to achieve a rapid Post-war smart city without clear strategy and comprehensive analysis of all aspects will cause a particularly catastrophic collapse in the interconnected social structure, services, education and health care system, leaving a long-term impact on the society. This paper presents the current status of the Research & Documentation methodology in the Data Collection phase by the objective investigations conducted through a series of local and international workshops species developed in this research called “Re-Coding“, offering consequent direct ground surveys, statistics and documentation study of the targeted areas, merging professionalism and youth power with local community to detect an open source data used as a tool to re-generate a precarious area towards a new methodology.
keywords Post-War Smart cities, Collecting Data, Local community, Objective Investigations, Artificial intelligence
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2021_399
id caadria2021_399
authors Alsalman, Osama, Erhan, Halil, Haas, Alyssa, Abuzuraiq, Ahmed M. and Zarei, Maryam
year 2021
title Design Analytics and Data-Driven Collaboration in Evaluating Alternatives
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 101-110
doi https://doi.org/10.52842/conf.caadria.2021.2.101
summary Evaluation of design ideas is an important task throughout the life cycle of design development in the AEC industry. It involves multiple stakeholders with diverse backgrounds and interests. However, there is limited computational support which through this collaboration is facilitated, in particular for projects that are complex. Current systems are either highly specialized for designers or configured for a particular purpose or design workflow overlooking other stakeholders' needs. We present our approach to motivating participatory and collaborative design decision-making on alternative solutions as early as possible in the design process. The main principle motivating our approach is giving the stakeholders the control over customizing the data presentation interfaces. We introduce our prototype system D-ART as a collection of customizable web interfaces supporting design data form and performance presentation, feedback input, design solutions comparisons, and feedback compiling and presentation. Finally, we started the evaluation of these interfaces through an expert evaluation process which generally reported positive results. Although the results are not conclusive, they hint towards the need for presenting and compiling feedback back to the designers which will be the main point of our future work.
keywords Design Analytics; Collaboration; Visualizations
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2021_202
id ecaade2021_202
authors Campos, Tatiana, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title The Use of Natural Materials in Additive Manufacturing of Buildings Components - Towards a more sustainable architecture
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 355-364
doi https://doi.org/10.52842/conf.ecaade.2021.1.355
summary The demand for sustainable building materials is currently a major concern of society. It is known that the traditional construction industry requires a high consumption of inorganic materials, which is associated with the excessive production of waste. Thus, this article intends to demonstrate the possibility of using the Additive Manufacturing (AM) technique Paste Extrusion Modeling (PEM) in the production of reusable, biodegradable and recyclable construction systems, using a combination of different natural materials that have created multiple pastes with different additives.Cellulose is a natural material - biodegradable, recyclable and low cost - and its implementation aims to change some aspects of the current state of the construction sector and can have a real impact on the exploration of innovative solutions and more sustainable alternative building systems. The integration of AM techniques, PEM method, supported by computational modelling tools, will allow the definition of a building system and its components. Depending on the material used - natural materials or biomaterials - the constraints and limitations of AM will be considered.
keywords Cellulose; Natural Fibers; Additive Manufacturing; Sustainable Construction
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_154
id ecaade2021_154
authors Capone, Mara, Lanzara, Emanuela and Marsillo, Laura
year 2021
title Customization System for Ergonomic Benches - DOMINO_ a parametric design configurator
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 437-444
doi https://doi.org/10.52842/conf.ecaade.2021.1.437
summary The principle of customization is based on the concept of modularity, which consists in the repetition of a module without changing size or shape of the single element. Therefore, this concept expands with introduction of smaller sub-modules to obtain the so called "complex modularity". According to this research framework our paper focuses on a customization system for designing an ergonomic bench that can be adaptable to different people (kids, adults, elders) and different use, sitting, semi-sitting and lying position. Our goal is to design a parametric "configurator", able to modify modules shape in relation to ergonomics specific needs and to combine them in relation to a specific context.
keywords complex modularity; ergonomic bench; parametric configurator
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2021_251
id ecaade2021_251
authors Carvalho, Joao, Cruz, Paulo J. S. and Figueiredo, Bruno
year 2021
title Ceramic AM Gantry Structures - Discretisation and connections between beams and columns
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 483-492
doi https://doi.org/10.52842/conf.ecaade.2021.2.483
summary The manufacture of architectural components driven by digital design tools and Additive Manufacturing (AM) allows the achievement of highly evolved constructive systems, more integrated into a specific reality to which it is intended to respond, resulting in unique and adapted solutions with high geometric and material performances. Considering the application of these methods to common structural elements, namely beams and columns, for which there are already several examples demonstrating their feasibility, we find that it is necessary to provide a sound answer to an element that is fundamental for these proposals to function together as a single system - the moment of connection between beams and columns. In this sense, this paper proposes the design and test of a set of connections with adapted geometry between beams and columns, produced through ceramic Liquid Deposition Modelling (LDM), applying logics of topological optimization. This work foresees the development of a constructive system that incorporates reversible and irreversible connections, being formalised in a set of gantry structures formed by two vertical elements and a horizontal one, giving the comparative model between digital design and manufacture methods and the traditional ones.
keywords Ceramic AM; Performative design; Computational design; Connections; Ceramic gantry structure
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2021_257
id ecaade2021_257
authors Cichocka, Judyta Maria, Loj, Szymon and Wloczyk, Marta Magdalena
year 2021
title A Method for Generating Regular Grid Configurations on Free-From Surfaces for Structurally Sound Geodesic Gridshells
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 493-502
doi https://doi.org/10.52842/conf.ecaade.2021.2.493
summary Gridshells are highly efficient, lightweight structures which can span long distances with minimal use of material (Vassallo & Malek 2017). One of the most promising and novel categories of gridshells are bending-active (elastic) systems (Lienhard & Gengnagel 2018), which are composed of flexible members (Kuijenhoven & Hoogenboom 2012). Timber elastic gridshells can be site-sprung or sequentially erected (geodesic). While a lot of research focus is on the site-sprung ones, the methods for design of sequentially-erected geodesic gridshells remained underdeveloped (Cichocka 2020). The main objective of the paper is to introduce a method of generating regular geodesic grid patterns on free-form surfaces and to examine its applicability to design structurally feasible geodesic gridshells. We adopted differential geometry methods of generating regular bidirectional geodesic grids on free-form surfaces. Then, we compared the structural performance of the regular and the irregular grids of the same density on three free-form surfaces. The proposed method successfully produces the regular geodesic grid patterns on the free-form surfaces with varying curvature-richness. Our analysis shows that gridshells with regular grid configurations perform structurally better than those with irregular patterns. We conclude that the presented method can be readily used and can expand possibilities of application of geodesic gridshells.
keywords elastic timber gridshell; bending-active structure; grid configuration optimization; computational differential geometry; material-based design methodology; free-form surface; pattern; geodesic
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2021_273
id ecaade2021_273
authors Dania, Panagiota, Theodoropoulou, Helena G., Karagianni, Anna, Geropanta, Vasiliki and Parthenios, Panagiotis
year 2021
title Enhancing User Experience through Interaction Design - Rethinking the municipal agora of Chania through AR narratives
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 263-272
doi https://doi.org/10.52842/conf.ecaade.2021.2.263
summary This paper examines the relationship between designing interactive experiences based on new technologies and the process of architectural narration. It highlights the idea of rethinking a building with historical, architectural and functional value, as an experience and a journey. Referring to the historic building of the Municipal Market of Chania, Greece and using the conceptual idea of designing through narratives, it delineates the process of integrating new technologies into the process of designing a spatial and temporal experience. Exploiting Augmented Reality, we design an application implementing a digital layer with architectural and historical content, that is integrated into reality, improving the on-site visit, providing enhanced understanding of the building and introducing experiential visitor-building interaction. The application is available through mobile devices and the proposed system is evaluated by a group of users showing the positive effects of the use of interactive technologies in redesigning the experience of a space.
keywords Mobile AR; cultural dissemination; architectural narration; interactive spatial experiences; interactive visualization
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2021_312
id sigradi2021_312
authors Dickinson, Susannah and Ida, Aletheia
year 2021
title Dynamic Interscalar Methods for Adaptive Design Futures
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 41–53
summary This paper addresses our current environmental and political climate directly, disseminating work from a research-based, upper-level architecture studio located at the border of Mexico and the United States. Dynamic digital tools and methods were developed to connect multiple scales of spatialized data. Additional field tools, including electromagnetic field (EMF) meters, environmental sensors, and micro-photography, enabled real-time dynamics to be combined with photogrammetry, satellite and GIS data. The selected outcomes utilize the methodological framework in different ways. Three presiding significant outcomes demonstrated from this work include: 1) micro-macro scale inquiry through spatio-temporal data collection and fieldwork; 2) parametric digital tools for emergent design optimization linking natural and artificial systems; and 3) human-machine-nature interactions for cultural awareness, participation, and activism. Collectively, these three functions of the methodology shift practice towards an alter-disciplinary logic to enable adaptive design outcomes that are responsive to a range of issues presented through site-specific climate change dynamics.
keywords Parametric Generative Design, Sustainable Design, Simulation, Bio-Inspired Design, Digital Pedagogy
series SIGraDi
email
last changed 2022/05/23 12:10

_id acadia21_302
id acadia21_302
authors Diniz, Nancy; Melendez, Frank
year 2021
title Inoculated Matter
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 302-305.
doi https://doi.org/10.52842/conf.acadia.2021.302
summary INOCULATED MATTER looks towards new possibilities for designing and making architectural elements with living organisms, upcycled waste, and 3D printing technologies. This research project, which is currently ongoing and has been developed over the past two years, includes a series of multi-scalar mycelium bio-composites, as a means of redefining material, water, and energy in the face of changing scales of manufacturing and resource cycles.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2021_122
id ascaad2021_122
authors Georgiou, Michail; Odysseas Georgiou, Pavlos Fereos, Eftihis Efthimiou
year 2021
title X-Max | A Digitally Fabricated, Component-Based, Scrap Metal Assembly
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 536-549
summary The paper presents the outcome, titled X-MAX, of an educational, intensive 2-week workshop that focused in digitally fabricated, 3D component-based, non-Euclidean geometries using sheet metal forming. Related case studies are analyzed, compared, and grouped to identify the position and contribution of the research in the field. Early design proposals are compared and evaluated based on the hypothesis that improvements in material efficiency and construction/fabrication logistics can contribute towards more affordable design solutions. The fittest solution is further developed and optimized for construction, resulting in a full-scale prototype demonstrating expedited assembly times and decrease in manual labor with parallel savings in material resources. A purposely built design workflow is supported by a comprehensive computational model, enabling information input and output and control via various design parameters. The methodologies of registering scrap sheet metal for fabrication and simulating material bending behavior implementing K-factors are presented and discussed as novel and integral parts of the above workflow.
series ASCAAD
email
last changed 2021/08/09 13:13

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_818667 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002