CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 603

_id ecaade2021_169
id ecaade2021_169
authors Qi, Yue, Zhong, Ruqing, Kaiser, Benjamin, Tahouni, Yasaman, Wagner, Hans-Jakob, Verl, Alexander and Menges, Achim
year 2021
title Augmented Accuracy - A human-machine integrated adaptive fabrication workflow for bamboo construction utilizing computer vision
doi https://doi.org/10.52842/conf.ecaade.2021.1.345
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 345-354
summary Despite being sustainable, strong and lightweight, naturally grown bamboo poles are currently used in restricted building typologies. This is due to the large tolerances in the built structures, which is caused by the variations in the dimensions and geometry of natural material as well as the manual, uninformed and imprecise assembly methods. In previous work, we introduced an adaptive fabrication method for bamboo structures that can monitor the fabrication process and compensate for deviations between built and designed form. As a proof of concept, the method is suitable for small scale bamboo structures in 2D- or simple 3D configuration. This paper extends the previous method by integrating the adaptation strategies into a cohesive fabrication and assembly workflow for large scale complex bamboo structures. To enable that, a more effective sensor localization method, adaptation algorithm, connection and assembly system, as well as web-based user interface are developed. The effectiveness of the proposed methods is demonstrated through the fabrication of a pavilion scale branching bamboo structure that complies with intended geometric boundary conditions. Even though the material has substantial geometrical variations, the final structure shows small geometric deviations and a successful interface with the prefabricated roof elements. Our work shows how vernacular materials and processes can be digitally augmented in order to reliably produce building structures, hence enabling their usage in modern applications to a larger extent.
keywords Adaptive Digital Fabrication; Construction Uncertainties; Computer Vision; Bamboo Structures; HMI
series eCAADe
email
last changed 2022/06/07 08:00

_id cdrf2021_359
id cdrf2021_359
authors Ayoub Lharchi, Mette Ramsgaard Thomsen, and Martin Tamke
year 2021
title Joint Descriptive Modeling (JDM) for Assembly-Aware Timber Structure Design
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_33
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Joints design is an essential step in the process of designing timber structures. Complex architectural topologies require thorough planning and scheduling, as it is necessary to consider numerous factors such as structural stability, fabrication capabilities, and ease of assembly. This paper introduces a novel approach to timber joints design that embed both fabrication and assembly considerations within the same model to avoid mistakes that might cause delays and further expenses. We developed a workflow that allows us to identify the fundamental data to describe a given joint geometry, machine-independent fabrication procedures, and the assembly sequence. Based on this, we introduce a comprehensive descriptive language called Joint Descriptive Model (JDM) that leverages industry standards to convert a joint into a usable output for both fabrication and assembly simulations. Finally, we suggest a seed of a joint’s library with some common joints.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia21_318
id acadia21_318
authors Borhani, Alireza; Kalantar, Negar
year 2021
title Nesting Fabrication
doi https://doi.org/10.52842/conf.acadia.2021.318
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 318-327.
summary Positioned at the intersection of the computational modes of design and production, this research explains the principles and applications of a novel fabrication-informed geometric system called nesting. Applying the nesting fabrication method, the authors reimage the construction of complex forms by proposing geometric arrangements that lessen material waste and reduce production time, transportation cost, and storage space requirements. Through this method, appearance and performance characteristics are contingent on fabrication constraints and material behavior. In this study, the focus is on developing design rules for this method and investigating the main parameters involved in dividing the global geometry of a complex volume into stackable components when the first component in the stack gives shape to the second. The authors introduce three different strategies for nesting fabrication: 2D, 2.5D, and 3D nesting. Which of these strategies can be used depends on the geometrical needs of the design and available tools and materials. Next, by revisiting different fabrication approaches, the authors introduce readers to the possibility of large-scale objects with considerable overhangs without the need for nearly any temporary support structures. After establishing a workflow starting with the identification of geometric rules of nesting and ending with fabrication limits, this work showcases the proposed workflow through a series of case studies, demonstrating the feasibility of the suggested method and its capacity to integrate production constraints into the design process. Traversing from pragmatic to geometrical concerns, the approach discussed here offers an integrated approach supporting functional, structural, and environmental matters important when turning material, technical, assembly, and transportation systems into geometric parameters.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cdrf2021_275
id cdrf2021_275
authors E. Özdemir, L. Kiesewetter, K. Antorveza, T. Cheng, S. Leder, D. Wood, and A. Menges
year 2021
title Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_26
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Double curvature enables elegant and material-efficient shell structures, but their construction typically relies on heavy machining, manual labor, and the additional use of material wasted as one-off formwork. Using a material’s intrinsic properties for self-shaping is an energy and resource-efficient solution to this problem. This research presents a fabrication approach for self-shaping double-curved shell structures combining the hygroscopic shape-changing and scalability of wood actuators with the tunability of 3D-printed metamaterial patterning. Using hybrid robotic fabrication, components are additively manufactured flat and self-shape to a pre-programmed configuration through drying. A computational design workflow including a lattice and shell-based finite element model was developed for the design of the metamaterial pattern, actuator layout, and shape prediction. The workflow was tested through physical prototypes at centimeter and meter scales. The results show an architectural scale proof of concept for self-shaping double-curved shell structures as a resource-efficient physical form generation method.
series cdrf
email
last changed 2022/09/29 07:53

_id cdrf2021_330
id cdrf2021_330
authors Felix Amtsberg, Caitlin Mueller, and Felix Raspall
year 2021
title Di-terial – Matching Digital Fabrication and Natural Grown Resources for the Development of Resource Efficient Structures
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_30
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary The research presented in this paper focusses on the concept of “Diterial” which aims to merge digital design and fabrication technology with natural materials such as bamboo poles and raw timber. It proposes a digital workflow that uses sensing techniques to gain individual material information of natural, unprocessed construction resources and identify their individual strengths and characteristics and therefore its potential in load-carrying structures. This information is then used to develop bespoke designs and fabrication concepts, bridging the gap between unprocessed material and automated fabrication setups. Two case studies, developed to prove this concept, are described and compared. Both cases focused on the development of spatial structures using node-bar combinations of local resources.
series cdrf
email
last changed 2022/09/29 07:53

_id ijac202119103
id ijac202119103
authors Liu, Jingyang; Yi-Chin Lee, and Daniel Cardoso Llach
year 2021
title Computational design and fabrication of highly customizable architectural space frames: Making a flat-cut Weaire-Phelan structure
source International Journal of Architectural Computing 2021, Vol. 19 - no. 1, 37–49
summary This paper documents a computational approach to the design, fabrication, and assembly of customizable space structures built entirely out of flat-cut interlocking elements without the need of nodes, fasteners, cement, or glue. Following a Research by Design (RbD) methodology, we establish a framework comprising geometric and parametric modeling, structural analysis, and digital fabrication stages to examine the following research question: how might the modularity of a construction kit be combined with the plasticity of parametric descriptions to facilitate the design and fabrication of flat-cut space structures? We find that an adaptive joint design that resolves local deformations at the node and element levels can facilitate the construction of flat-cut space structures by making modular components responsive to local geometric, material, and mechanical demands. The research centers on the design and construction of an architecture-scale installation based on the Weaire-Phelan structure—an aperiodic space-filling geometric structure that approximates the geometry of foam—entirely out of flat-cut interlocking elements. Documenting the process in technical detail, as well as some limitations, the paper contributes to recent efforts to develop digital materials suitable for architectural applications. In addition, it contributes to extend the formal and architectural possibilities of flat-cut space structure design by facilitating “bottom-up” design explorations in concert with the structure’s tectonic resolution.
keywords Computational design, generative fabrication, construction kit
series journal
email
last changed 2021/06/03 23:29

_id acadia21_222
id acadia21_222
authors Lok, Leslie; Samaniego, Asbiel; Spencer, Lawson
year 2021
title Timber De-Standardized
doi https://doi.org/10.52842/conf.acadia.2021.222
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 222-231.
summary Timber De-Standardized is a framework that salvages irregular and regular shaped tree logs by utilizing a mixed reality (MR) interface for the design, fabrication, and assembly of a structurally viable tree log assembly. The process engages users through a direct, hands-on design approach to iteratively modify and design irregular geometry at full scale within an immersive MR environment without altering the original material.

A digital archive of 3D scanned logs are the building elements from which users, designing in the MR environment, can digitally harvest (though slicing) and place the elements into a digitally constructed whole. The constructed whole is structurally analyzed and optimized through recursive feedback loops to preserve the user’s predetermined design. This iterative toggling between the physical and virtual emancipates the use of irregular tree log structures while informing and prioritizing the user’s design intent. To test this approach, a scaled prototype was developed and fabricated in MR.

By creating a framework that links a holographic digital design to a physical catalog of material, the interactive workflow provides greater design agency to users as co-creators in processing material parts. This participation enables users to have a direct impact on the design of discretized tree logs that would otherwise have been discarded in standardized manufacturing. This paper presents an approach in which complex tree log structures can be made without the use of robotic fabrication tools. This workflow opens new opportunities for design in which users can freely configure structures with non-standardized elements within an intuitive MR environment.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_143
id caadria2021_143
authors Song, Yang, Koeck, Richard and Luo, Shan
year 2021
title AR Digi-Component - AR-assisted,real-time,immersive design and robotic fabrication workflow for parametric architectural structures
doi https://doi.org/10.52842/conf.caadria.2021.2.253
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 253-262
summary This research project, entitled AR Digi-Component, tries to digitalize the traditional architectural components and combines Augmented Reality (AR) technologies to explore new possibilities for architectural design and assembly. AR technology and Digitalize components will help to achieve a real-time immersive design and an AR-assisted robotic fabrication process through the augmented environments. As part of the AR Digi-Component project, we created an experimental design prototype in which designers gestures are being identified in AR real-time immersive design process, and a fabrication prototype in which traditional 2D drawings are being replaced by 3D on-site holographic guidance, followed by an assembly process in which robotic operations are being controlled by humans within an AR simulation to enhance the assembly efficiency and safety. In this paper, we are sharing the preliminary research results of such AR-assisted tests, for which we used a UR10 Robotic arm in combination with Microsoft HoloLens as well as in terms of software Rhino, HAL Robotics, FURobot, PX Simulate, and Fologram plugin in Grasshopper, to demonstrate new kind of applications and workflow of AR technology for real-time, immersive design and robotic fabrication.
keywords Augmented Reality; immersive design; holographic assembly instruction; robotic fabrication; real-time interaction
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2021_4
id sigradi2021_4
authors Song, Yang, Koeck, Richard and Luo, Shan
year 2021
title [AR]OBOT: the AR-Assisted Robotic Fabrication System for Parametric Architectural Structures
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1115–1126
summary [AR]OBOT tries to assist the robotic fabrication process for parametric architectural structures with Augmented Reality (AR) technology to explore new possibilities for easy architectural robotic operations. Due to the lack of computer programming skills and the disconnection between design and fabrication, architects are hampered in the robotic operation process. As part of our project, we create a visualization prototype in which robotic and on-site related information is being shown through AR devices overlapping on the physical world; followed by a robotic trajectory planning method in which designers’ gestures are being identified by AR as location nodes and calculated with the obstacle avoidance system; and an operation process in which robots are being controlled by human gestures and interactions with holographic simulation to enhance the robotic fabrication process efficiency and safety. In this paper, we share the preliminary results to demonstrate a new kind of AR-assisted workflow for the architects to perform the robotic fabrication of parametric architectural structures intuitively.
keywords Augmented Reality, Robotic Fabrication, Human-robot Collaboration
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia21_28
id acadia21_28
authors Tessmer, Lavender; Tibbits, Skylar
year 2021
title Personalized Knit Masks
doi https://doi.org/10.52842/conf.acadia.2021.028
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 28-37.
summary In this paper we outline a new workflow for textiles customization through the design and fabrication of knit shape-changing masks that contain multi-material fibers to create programmable transformation. We have created a process for producing standardized and scalable textile goods using a flatbed industrial CNC knitting machine which are then "tailored" to an individual's body measurements through a system of programmable textiles, custom multi-material fiber, and robotic heat activation. Hybridizing the efficiency of standardized textile production with unique geometric variation, the proposed strategy centers on the shape-change behavior of fibers and precise knit structures to produce personalized textiles. This work focuses on the face mask as an example of a now-ubiquitous textile good that is often ill fitting and yet can now be highly tailored to an individual’s personal fit and comfort. This paper outlines the materials, knit fabric development, mask design, digital workflow, and fabrication steps for producing truly customized masks for an individual's unique facial geometry.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia21_232
id acadia21_232
authors Goepel, Garvin; Crolla, Kristof
year 2021
title Augmented Feedback
doi https://doi.org/10.52842/conf.acadia.2021.232
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 232-237.
summary Augmented Reality (AR) has the potential to create a paradigm shift in the production of architecture.

This paper discusses the assembly and evaluation of a bamboo prototype installation aided by holographic instructions. The case study is situated within the framework of AR-driven computational design implementation methods that incorporate feedback loops between the as-built and the digital model.

The prototype construction aims to contribute to the ongoing international debate on architectural applications of digital technology and computational design tools and on the impact these have on craftsmanship and architecture fabrication. The case study uses AR-aided construction techniques to augment existing bamboo craftsmanship in order to expand its practically feasible design solution space. Participating laypersons were challenged to work at the interface of technology and material culture and engage with both latest AR systems and century-old bamboo craft.

This paper reflects on how AR tracking can be used to create a constant feedback loop between as-built installations and digitally designed source models and how this allows for the real-time assessment of design fidelity and deviations. The case study illustrates that this is especially advantageous when working with naturally varying materials, like bamboo, whose properties and behaviour cannot straightforwardly be accurately simulated digitally.

The paper concludes by discussing how augmented feedback loops within the fabrication cycle can facilitate real-time refinement of digital simulation tools with the potential to save time, cost, and material. The augmentation of onsite available skills facilitates the democratisation of non-standard architecture design production.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_027
id caadria2021_027
authors Lu, Ming, Zhou, Yifan, Wang, Xiang and Yuan, Philip F.
year 2021
title An optimization method for large-scale 3D printing - Generate external axis motion using Fourier series
doi https://doi.org/10.52842/conf.caadria.2021.1.683
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 683-692
summary With the increase in labor costs, more and more robot constructions appear in building construction and spatial structure fabrication. There are many robots working on large-scale objects. When the reach range of the robot cannot meet the requirements, so an external axis is needed. The external axis is usually a linear motion device, which can significantly increase the operating range of the robotic arm. In actual construction, it is also widely used. This article introduces a 3d printing coffee bar project. Because this project is of a large scale and needs to be printed at one time, the XYZ external axis was used in this project to complete the task. Inspired by this project, this article study several methods of optimizing the motion of external axes in large-scale construction. Finally, we chose to use the Fourier series as the most suitable method to optimize the printing path and programed this method as a component of FUROBOT for more convenient use. This article explains the principle of this method in detail. Finally, this article uses a 3D printing example to illustrate the precautions in actual use.
keywords robotics; motion optimize; Fourier series; 3D printing; external axis
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2021_132
id caadria2021_132
authors Nodado, Cheska Daclag, Yogiaman, Christine and Tracy, Kenneth
year 2021
title Towards Wind-Induced Architectural Systematization - Demonstrating the Collective Behaviour of Urban Blocks as a Design Asset
doi https://doi.org/10.52842/conf.caadria.2021.2.447
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 447-456
summary This paper presents the premise of collective behaviour of singular units as a design asset in an urban environment. The collaborative effect of building shapes, surface texture and the order of buildings on wind patterns in the urban were explored and analysed. The results revealed that these three factors are imperative to effectively design airflow and air velocity to create cooling effects in warm urban environments. This study intends to solve the problem of compact building blocks which create stagnant air in outdoor urban spaces that worsens outdoor urban thermal comfort. As the study involves a large scale urban area which requires tremendous simulation time, this paper would also demonstrate an attempt for an alternative workflow in studying computational fluid dynamic (CFD) through utilizing Houdini, which is an animation software to predict wind flow patterns in an urban context in a faster way which is highly beneficial for conceptual design stage. The paper explains the setup of Houdini working interface which enables the researcher to compare simulation results of varying models with ease via the switch button, and further improve simulation speed by disabling the need of remeshing the original model.
keywords collaborative behaviour; urban blocks; wind pattern; computational fluid dynamics (CFD)
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2021_144
id caadria2021_144
authors Zhu, Lufeng, Wibranek, Bastian and Tessmann, Oliver
year 2021
title Robo-Sheets - Double-Layered Structure Based on Robot-Aided Plastic Sheet Thermoforming
doi https://doi.org/10.52842/conf.caadria.2021.1.643
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 643-652
summary Computational design, in combination with robotic fabrication, allows the exploration of complex geometrical differentiation. Notably, thermoplastic sheet materials offer great potential for explorations in robotic fabrication due to their mailable qualities. However, the production of complex shapes from flat-sheet-thermoplastic materials usually depends on molds or on time-consuming procedures. This paper introduces a workflow for the design and fabrication of a double-curved surface made from plastic sheets, which develops a self-supporting structure through using robot-aided one-punch thermoforming. The thickness of a double-curved surface is optimized by applying the Finite Element Method. Notably, forming thermoplastic into a minimal surface strengthens its mechanical properties and this takes a relatively short period of time. According to the relationship between moment and stress in section, two connected minimal-surfaces form a three-dimensional I-profile, making it possible to construct a highly material-efficient structure. Unlike the normal form-finding process, the structure is not limited to compression-only geometry. Compared to thermoforming methods such as Single Point Incremental Forming (SPIF), our one-punch forming process described in this paper shows demonstrates high precision while being less time-consuming. Here, we present a one-to-one scale working prototype as proof of our approach.
keywords Robotic fabrication; Plastic sheet thermoforming; Lightweight structure; Self-supporting structure; Minimal surface
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_291
id caadria2021_291
authors Bansal, Medha and Erdine, Elif
year 2021
title Bio-Mineralisation And In-Situ Fabrication Of In-Dune Spaces: Case Study Of Thar Desert
doi https://doi.org/10.52842/conf.caadria.2021.1.493
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 493-502
summary Desertification has made large productive landscapes in the South-west Thar desert redundant, subjected people to migration and induced a constant influx of sand into the region (Singhvi and Amal, 2014). The abundance of sand creates an opportunity to adopt an existing technique, Bio-mineralisation, to develop a sand based composite material which, when treated with a construction binder like sodium alginate, can be used for engineering purposes. The paper sets a theoretical framework to develop a fabrication mechanism with microbial-grout injections and propose the development of in-dune/underground assembly of habitable spaces. Each of the sub-components of material system, fabrication mechanism and In-dune structures are detailed, and evaluated to devise a hierarchy between them. Their interdependencies together inform design strategies, a phasing plan and global time scale for overall terrain transformation.
keywords Bio-mineralisation; Bio-grouting; In-dune fabrication; Tool path algorithms; Micro-climate analysis
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_329
id caadria2021_329
authors Breseghello, Luca, Sanin, Sandro and Naboni, Roberto
year 2021
title Toolpath Simulation,Design and Manipulation in Robotic 3D Concrete Printing
doi https://doi.org/10.52842/conf.caadria.2021.1.623
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 623-632
summary Digital fabrication is blurring the boundaries between design, manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic. manufacturing and material effects. More and more experimental design processes involve an intertwined investigation of these aspects, especially when it comes to additive techniques such as 3D Concrete Printing (3DCP). Conventional digital tools present limitations in the description of an object, which neglects material, textural, and machinic information. In this paper, we exploit the control of extrusion-based 3D printing via programmed layered toolpath as a design method for enhancing the control of the manufactured architectural elements. The paper presents an experimental framework for design, analysis and fabrication with 3DCP, developing a system for materializing interdependencies between geometry, material, performance. This is applied to a series of architectural artefacts which demonstrate the advantages and possibilities opened by the introduced workflow, expanding the design process towards higher control on the objects buildability, structural integrity and aesthetic."
keywords 3D Concrete Printing; Robotic Fabrication; Additive Manufacturing; Toolpath Simulation; Toolpath Manipulation
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_400
id acadia21_400
authors Bruce, Mackenzie; Clune, Gabrielle; Xie, Ruxin; Mozaffari, Salma; Adel, Arash
year 2021
title Cocoon: 3D Printed Clay Formwork for Concrete Casting
doi https://doi.org/10.52842/conf.acadia.2021.400
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 400-409.
summary Concrete, a material widely used in the construction industry today for its low cost and considerable strength as a composite building material, allows designers to work with nearly any form imaginable; if the technology to build the formwork is possible. By combining two historic and widely used materials, clay and concrete, our proposed novel process, Cocoon, integrates robotic clay three-dimensional (3D) printing as the primary formwork and incrementally casting concrete into this formwork to fabricate nonstandard concrete elements. The incremental casting and printing process anchors the concrete and clay together, creating a symbiotic and harmonious relationship. The concrete’s fluidity takes shape from the 3D printed clay formwork, allowing the clay to gain structure from the concrete as it cures. As the clay loses moisture, the formwork begins to shrink, crack, and reveal the concrete below. This self-demolding process produces easily removable formwork that can then be recycled by adding water to rehydrate the clay creating a nearly zero-waste formwork. This technique outlines multiple novel design features for complex concrete structures, including extended height limit, integrated void space design, tolerable overhang, and practical solutions for clay deformation caused by the physical stress during the casting process. The novelty of the process created by 3D printing clay formwork using an industrial robotic arm allows for rapid and scalable production of nearly zero-waste customizable formwork. More significant research implications can impact the construction industry, integrating more sustainable ways to build, enabled by digital fabrication technologies.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_563866 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002