CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 26

_id ascaad2022_013
id ascaad2022_013
authors Al-Suwaidi, Mohammed; Agkathidis, Asterios; Haidar, Adonis; Lombardi, Davide
year 2022
title Application of Immersive Technologies in the Early Design Stage in Architecture Education: A Systematic Review
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 313-330
summary This paper reviews existing research on the use of immersive technologies, Virtual Reality in particular, in various stages of the architectural design process. Nine research papers were systematically reviewed and analyzed. They were filtered down by using the keywords: ‘Virtual/Augmented Reality, Architectural Education, Gravity Sketch, Unity and Virtual Environments’ from two main databases that focus on digital and computer-aided design research: Cumulative Index about publications in Computer Aided Architectural Design (CuminCAD) and Elsevier's abstract and citation database (Scopus). The selection of papers was filtered down based on relevant approaches which investigate architectural design, creative thinking and teaching methodology using immersive technologies. Another criterion applied to the filtering process of the research papers is the exploration and integration process of new tools and overlapping external software to aid the existing workflow of the user. Our findings explore the evolution of immersive tools to highlight the advantages and disadvantages of virtual reality-based software and hardware, as a creative development tool in the field of education and practice. This paper also proposes a novel teaching methodology that incorporates immersive technologies in the early design phase of architectural education.
series ASCAAD
email
last changed 2024/02/16 13:24

_id acadia22pr_148
id acadia22pr_148
authors Jung,, Francisco; Al Othman, Sulaiman; Im, Hyeonji Claire; García del Castillo y López, Jose Luis; Bechthold, Martin
year 2022
title Responsive Spatial Print Trajectory: 3D Printing of Clay Lattices with Self-Corrective Recalibration
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 148-153.
summary This project presents a novel method of spatially printing clay lattices by controlling fabrication parameters such as the printing head speed and the material extrusion rate following a 3D-choreographed toolpath. Spatial printing refers to the unrestricted movement of the printer nozzle in three axes (x, y, z) when extruding material, as opposed to the conventional 2-axis layer-by-layer deposition that is very slow and results in increased operational costs. This method—enhanced with an integrated industrial laser displacement sensor to collect deflection data subsequently used to calibrate the next layer toolpath geometry in real- time—works optimally with carbon-fiber reinforcements for increased tensile performance.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v1_92
id acadia23_v1_92
authors Fishman, Cynthia
year 2023
title BiomimicReality: An Interactive VR Environment Based on Biomimicry
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 92-97.
summary Climate change is not a theoretical construct that might affect future generations; it is happening now. Wildfires, drought, and extreme temperatures are occurring throughout the world, and are projected to get worse. These environmental changes affect all species on this planet. Due to the overwhelming, depressing, and complex subject matter that is climate change, people can feel apathetic or tune out when it is being discussed, in addition to having feelings of hopelessness surrounding the future. These feelings are categorized as eco-anxiety (Ágoston et al. 2022, 1-3).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ascaad2022_028
id ascaad2022_028
authors Hassan, Sarah
year 2022
title Adapting Digital Architecture Vocabulary to Reformulate Geometric Compositions of Islamic Facades - Case Study: Proposed Model for Islamic Façade through Digital Vocabulary
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 463-483
summary Islamic architectural facades characterized by many distinguished vocabularies that formed its character; as arches, ornaments, al-Muqarnas and mashrabeya etc. However, during the modern era, the Islamic heritage regions faced many changes and transformations of its character, either by new buildings that were built according to modern or unplanned styles, or by random and unplanned developments. However, recently and with the beginning of the twenty first century and with the great breakthrough in the digital tools and techniques, it facilitates new horizons in the architectural form generation. Accordingly, the research focuses on how to investigate the positive impacts of digital technologies on Islamic Architecture. In addition to how to utilize the digital thoughts, vocabulary, and techniques to create and develop a heritage inspired vocabulary that can compromise with the traditional Islamic architecture theme. Through this, the research aims to achieve a systemization of digital design strategies to facilitate the generation of Islamic-inspired façade, to create a new Islamic architecture that can be applied within Islamic heritage regions to connect the modern buildings which located in these regions with the existing Islamic reference. To achieve that, the research starts with studying and discussing the main elements that formed the Islamic facades, to stand on the methods of formations of each element and its function of the Islamic façade, whether it is an intrinsic function or aesthetic function. Consequently, standing on the main digital theories that lead to new architectural vocabulary that can homogenate with Islamic vocabulary, through studying the concept of each digital theory, accordingly how it can be applied theoretically to create a modern façade with an Islamic spirit. The research ends with a case study for a proposed modern building that resembles most of the recent buildings in Al-Azhar Islamic region in Cairo, and how through applying some selected digital theories can result in developing and renovating this facade to match the heritage Islamic surrounding in a new digital way.
series ASCAAD
email
last changed 2024/02/16 13:24

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateøina; Stretavská, Antónia; Míèa, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ecaade2022_431
id ecaade2022_431
authors Sieder-Semlitsch, Jakob and Nicholas, Paul
year 2022
title Self-Serveying Multi-Robot System for Remote Deposition Modelling
doi https://doi.org/10.52842/conf.ecaade.2022.1.233
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 233–240
summary The need for increased automation of the AEC sector has been extensively documented within the architectural discipline over recent years. Far beyond economic perspectives, current advances in technology offer an increased and more direct implementation of sustainable materials. Within this research, the potential for the re-use of material with low embodied energy within automated construction will be examined. Herefore, Remote Material Deposition (RDM, firstly described in Dörfler et al., 2014) is utilized as main fabrication method, deploying varying compositions of local building debris, lime mortar, and sand, via a throwing arm. This research explores a method of continuous verification of material deployment and removal of material oversaturation to guarantee accuracy. Herefore, all instances of the robot ecology are in direct communication with one another and the user for verification, adaptation, and information. The proposed framework is examined through experimentation by designing, building, and implementing an inter-communicative network of bespoke semi-autonomous robots with all proposed parts of the system.
keywords Construction Automation, Material Reuse, Onsite Construction, Self Verifying System, Robot Ecology, Additive Manufacturing
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_51
id sigradi2022_51
authors Varsami, Constantina; Tsamis, Alexandros; Logan, Timothy
year 2022
title Gaming Engine as a Tool for Designing Smart, Interactive, Light-Sculpting Systems
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 617–628
summary Even though interactive (Offermans et.al., 2013), adaptive (Viani et.al., 2017), and self-optimizable (Sun et.al., 2020) lighting systems are becoming readily available, designing system automations, and evaluating their impact on user experience significantly challenges designers. In this paper we demonstrate the use of a gaming engine as a platform for designing, simulating, and evaluating autonomous smart lighting behaviors. We establish the Human - Lighting System Interaction Framework, a computational framework for developing a Light Sculpting Engine and for designing occupant-system interactions. Our results include a. a method for combining in real-time lighting IES profiles into a single ‘combined’ profile - b. algorithms that optimize in real-time, lighting configurations - c. direct glare elimination algorithms, and d. system energy use optimization algorithms. Overall, the evolution from designing static building components to designing interactive systems necessitates the reconsideration of methods and tools that allow user experience and system performance to be tuned by design.
keywords User Experience, Human-Building Interaction, Smart Lighting, Lighting Simulation, Gaming Engine
series SIGraDi
email
last changed 2023/05/16 16:56

_id acadia22_68
id acadia22_68
authors Al Othman, Sulaiman; Bechthold, Martin
year 2022
title Non-Linear Fabrication
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 68-75.
summary This paper describes an improved data collection methodology in the context of clay 3D printing that integrates structured light scanning tech- nology. The ultimate goal is to use this data for toolpath calibration during the next step of the research. The integrated process measures and then addresses the deflections caused by the successive build-up of clay layers that cause changes in stiffness across the lower printed layers, distortions and shifting of clay beads caused by extrusion pressure and nozzle maneuvering, and air gaps in the clay mix that affect the material flow rate.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id acadia22_268
id acadia22_268
authors Hammett, Levi; Abbass, Fatima; Al Saad, Hind; Suleiman, Mohammad
year 2022
title Alternative Typographic Histories
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 268-271.
summary This speculation of alternative typographic histories is an attempt to re-examine the evolutionary path of the Arabic script within inherited technological constraints. this work aims to uncover new pathways for the development of the Arabic script in order to add new perspectives to the contemporary type design discourse.
series ACADIA
type field note
email
last changed 2024/02/06 14:00

_id ascaad2022_004
id ascaad2022_004
authors Falih, Zahraa; Mahdavinejad, Mohammadjavad; Tarawneh, Deyala; Al-Mamaniori, Hamza
year 2022
title Solar Energy Control Strategy using Interactive Modules
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 117-138
summary The concept of interactive canopy emerged as a notable manifestation of smart buildings in architectural endeavors, using artificial intelligence applications in computational architecture, interactive canopies came as a potential response for living organisms to combat external environmental changes as well as reduce energy consumption in buildings. This research aims to explore architecture with higher efficiency through the impact of environmentally technological factors on the design form by introducing solar energy into the design process through the implementation of interactive curtains that interact with the sun in the form of an umbrella. The main objective of the umbrellas is to protect the users from the sun's harmful rays. After designing an interactive cell using Grasshopper, the methodology follows an analytical and experimental approach, the analytical section is summarized by conducting a case study of multiple models and analyzing the techniques used in these models to discover the significant advantages and disadvantages of the design. While the experimental section demonstrates the mechanism for implementing the interactive modules. The research suggests that by designing an interactive canopy that responds to external changes and senses solar radiation in ways that when the intensity of solar radiation increases and the sun is perpendicular to the dynamic units, will lead to maintaining a more balanced level of illumination. The work efficiency is studied by simulating it by Climate Studio.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_488
id caadria2022_488
authors Guo, Zhe, Zhang, Zihuan and Li, Ce
year 2022
title Robotic Carving Craft, Research on the Application of Robotic Carving Technology in the Inheritance of Tradition-Al Carving Craft
doi https://doi.org/10.52842/conf.caadria.2022.1.747
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 747-756
summary In order to realize the inheritance of handicraft skills via digital fabrication technique, so as to preserve the traditional construction culture, this paper discusses a method of control industrial robot (six-axis KUKA kr-60 robotic arm) simulate carving craftsmen working process and explores the relationship between carving posture and different clay states. This paper starts with discussion with cultural heritage in the background of digital tools application. Next, a method to determine the pose of robotic arm by giving the angle value of the six axis is applied in the subsequent carving experimental research, which can make the robotic arm have a smoother and reasonable motion performance by disable the redundant axis movement of the robotic arm when adjusting those poses. Then, a series of carving experiments has been carried out to explore the connection between robotic movement and carved detail, together with a carving path arrangement method that allow for specific carved lines caused by given axis value. This research shows the possibility to create complex form through defining robot movement, which could fundamentally make robot manufacturing a new formal meaning.
keywords Clay Carving, Robotic Arm Control, Crafts Inheritance, Form Algorithm, SDG 8
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_147
id sigradi2022_147
authors Macruz, Andrea; Daneluzzo, Mirko; Tawakul, Hind; Al Hashimi, Mona
year 2022
title Performative Accessories in Multispecies Design: Enhancing Humidity Levels for Plants with 3D-printed Biomimetic Structures
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1201–1212
summary The paper moves the design debate from human-centered toward posthuman design, discussing how designers can use a strategy based on Multispecies Ethnography and Participatory Design, considering nonhuman agents to create efficient designs. To illustrate this, it describes a project of 3D-printed biomimetic structures for plants that enhances humidity levels in internal environments. The project methodology started by analyzing the ideal humidity for indoor plants and humans, which is between 40% to 50%. Subsequently, a biomimicry study was done to understand how to generate a cooler indoor microclimate using passive strategies and how to create an effective interlocking system to connect structures. 3D-printed structures as supports for water droplets were designed according to their performance and placed in different arrangements around the plant itself. The structures were tested, and humidity levels increased by approximately 13%. The paper discusses the resultant evidence-based design and a new approach to mass customization.
keywords Bio-Inspired Design, Multispecies Design, Biomimicry, 3D printing, Humidity Control
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_74
id caadria2022_74
authors Mazza, Domenico, Kocaturk, Tuba and Kaljevic, Sofija
year 2022
title Geelong Digital Outdoor Museum (GDOM) - Photogrammetry as the Surface for a Portable Museum
doi https://doi.org/10.52842/conf.caadria.2022.1.677
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 677-686
summary This paper presents the development and evaluation of the Geelong Digital Outdoor Museum (GDOM) prototype accessible at https://gdom.mindlab.cloud. GDOM is a portable museum‚our novel adaptation of the distributed museum model (Stuedahl & Lowe, 2013) which uses mobile devices to present museum collections attached to physical sites. Our prototype defines a way for intangible heritage associated with tangible landscapes to be accessible via personal digital devices using 360 3D scanned digital replicas of physical landscapes (photogrammetric digital models). Our work aligns with efforts set out in the UN Sustainable Development Goal 11 (SDG 11) to safeguard cultural and natural heritage, by openly disseminating the heritage of physical sites seamlessly through the landscape. Using a research by design methodology we delivered our prototype as a modular web-based platform that leveraged the Matterport digital model platform. We qualitatively evaluated the prototype's usability and future development opportunities with 32 front-end users and 13 potential stakeholders. We received a wide gamut of responses that included: users feeling empowered by the greater accessibility, users finding a welcome common ground with comparable physical experiences, and users and potential stakeholders seeing the potential to re-create physical world experiences with modifications to the digital model along with on-site activation. Our potential stakeholders suggested ways in which GDOM could be integrated into the arts, education, and tourism to widen its utility and applicability. In future we see design potential in breaking out of the static presentation of the digital model and expanding our portable museum experience to work on-site as a complement to the remote experience. However, we recognise the way in which on-site activation integrate into users' typical activities can be tangential (McGookin et al., 2019) and this would necessitate further investigation into how to best integrate the experience on-site.
keywords Cultural Heritage, Intangible Heritage, Digital Heritage, Web Platform, 3D Scanning, Photogrammetry, Digital model, Portable Museum, Distributed Museum, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2023_243
id sigradi2023_243
authors O. Oporto, Italo, Martínez Arias, Andrea and Villouta Gutierrez, Daniela
year 2023
title Iluminación y configuración espacial: Una metodología de análisis íntegra: El caso del Servicio de Psiquiatría Guillermo Grant Benavente en Concepción, Chile.”
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 385–396
summary Our everyday environment plays a significant role in shaping our social and emotional interactions. It has been empirically evidenced that natural daylight mitigates depression, insomnia, and other disorders (Weber, 2022). This resonates with the fact that individuals with disrupted circadian rhythms are more susceptible to mental health perturbations (Menculini et al., 2018). The current investigation delves into the correlation between luminosity and spatial configuration within the Guillermo Grantt Benavente Psychiatry Service in Concepción, Chile. The contention is that proficient spatial connectivity and exposure to natural daylight can potentially enhance therapeutic dimensions. The overarching objective is to comprehend this nexus for formulating an architectural design methodology. Specific objectives encompass: 1. Defining the communal spaces under scrutiny; 2. Analyzing luminosity and spatial attributes. The methodological approach encompasses a hybrid framework encompassing interviews, spatial analysis, and illuminance measurements. An intricate interrelationship among preferred spaces, illuminance, and spatial characteristics is anticipated.
keywords Environment, Lighting, Space Syntax, Mental health, Psychiatric residence
series SIGraDi
email
last changed 2024/03/08 14:07

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_492626 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002