CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 153

_id acadia22pr_148
id acadia22pr_148
authors Jung,, Francisco; Al Othman, Sulaiman; Im, Hyeonji Claire; García del Castillo y López, Jose Luis; Bechthold, Martin
year 2022
title Responsive Spatial Print Trajectory: 3D Printing of Clay Lattices with Self-Corrective Recalibration
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 148-153.
summary This project presents a novel method of spatially printing clay lattices by controlling fabrication parameters such as the printing head speed and the material extrusion rate following a 3D-choreographed toolpath. Spatial printing refers to the unrestricted movement of the printer nozzle in three axes (x, y, z) when extruding material, as opposed to the conventional 2-axis layer-by-layer deposition that is very slow and results in increased operational costs. This method—enhanced with an integrated industrial laser displacement sensor to collect deflection data subsequently used to calibrate the next layer toolpath geometry in real- time—works optimally with carbon-fiber reinforcements for increased tensile performance.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id acadia23_v1_92
id acadia23_v1_92
authors Fishman, Cynthia
year 2023
title BiomimicReality: An Interactive VR Environment Based on Biomimicry
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 92-97.
summary Climate change is not a theoretical construct that might affect future generations; it is happening now. Wildfires, drought, and extreme temperatures are occurring throughout the world, and are projected to get worse. These environmental changes affect all species on this planet. Due to the overwhelming, depressing, and complex subject matter that is climate change, people can feel apathetic or tune out when it is being discussed, in addition to having feelings of hopelessness surrounding the future. These feelings are categorized as eco-anxiety (Ágoston et al. 2022, 1-3).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2022_366
id ecaade2022_366
authors Geropanta, Vasiliki, Karagianni, Anna, Parthenios, Panagiotis, Ampatzoglou, Triantafyllos, Fatouros, Loukas, Simantiraki, Vasiliki, Brokos-Melissaratos, Orestis and Eleftheriadis, Dimitris
year 2022
title Digitalization of Participatory Greening - The case of UnionYouth in Chania
doi https://doi.org/10.52842/conf.ecaade.2022.1.469
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 469–478
summary The contemporary climate crisis pushed communities of actors, cities and citizens to use smart technology, digital platforms, and data-based intelligence to steer creative solutions for greening in their urban ecosystems. This phenomenon brought about an increasing imperative for citizen participation and inclusion, in the co-design of green infrastructures, suggesting alternative ways to deal with the lack or misuse of public space. In this framework, this paper analyzes the case of ''UnionYouth in Chania'', a project that aims a) to build an environmental awareness strategy for Generation Z, b) to promote capacity-building processes related to climate change and environmental protection, c) actually transform the city public space through participatory processes. Specifically, the project describes the creation of a digital platform and a mobile app consisting of several engagement tools that allow interaction between the digital community of youth, the city's decision-makers, and city greening actors. Therefore, the first part of the paper talks about the necessity of promoting today's participatory processes in the city for climate change mitigation through a literature review that emerged in the last decade. The second part of the paper examines a case study, namely UnionYouth in Chania, a digital collaborative platform that promotes methods for greening the city through district-based, activity-based, and network-based redesign solutions. The third part of the paper brings about interesting reflections on the relationship between the analog and digital world, and how bottom-up processes may be an important tool in city planning. The overall scope of the analysis of the specific case study is to bring insights into the architectural world, as a means to create more bridges with citizens and communities and contribute to their greening understanding.
keywords Climate Change, Generation Z, Green Infrastructure, Raise Awareness, Mobile Application, Participatory Design, Smart City
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ecaade2022_302
id ecaade2022_302
authors Lu, Xin, Meng, Zeyuan, Rodriguez, Alvaro Lopez and Pantic, Igor
year 2022
title Reusable Augmented Concrete Casting System - Accessible method for formwork manufacturing through holographic guidance
doi https://doi.org/10.52842/conf.ecaade.2022.1.371
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 371–380
summary Reinforced concrete has been one of the essential materials for modern architecture for the last hundred years. Its use is entirely global, having been adopted by all cultures and styles since its invention in the late 19th century. Although its value is excellent due to its low cost, durability and adaptability, its environmental impact is significant, being, in fact, one of the most polluting industries in the world (Babor et al. 2009). This experimental project will research a more sustainable use of concrete, exploring a new form of reusable concrete formwork that will ideally reduce the CO2 footprint by removing wood waste in the casting process and replacing it with adaptable metal components. The modular part-based system for the concrete casting also attempts to simplify one of the current complexities for concrete construction, the Skilled-Labour shortage. (Yusoff et al. 2021). To mitigate this problem, the project also proposes using an Augmented Assembly logic for the casting parts to guide the ensemble and dismantle the formwork through an optimised algorithmic logic. The use of Augmented Reality as a replacement for traditional paper instructions will facilitate access to more workers to this construction art and potentially improve access to optimised use of concrete in developing communities with restricted building technological resources.
keywords Mixed Reality, Distributed Manufacturing, Augmented Manufacturing, Sustainability, Computational Design, Concrete Casting
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2022_431
id ecaade2022_431
authors Sieder-Semlitsch, Jakob and Nicholas, Paul
year 2022
title Self-Serveying Multi-Robot System for Remote Deposition Modelling
doi https://doi.org/10.52842/conf.ecaade.2022.1.233
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 233–240
summary The need for increased automation of the AEC sector has been extensively documented within the architectural discipline over recent years. Far beyond economic perspectives, current advances in technology offer an increased and more direct implementation of sustainable materials. Within this research, the potential for the re-use of material with low embodied energy within automated construction will be examined. Herefore, Remote Material Deposition (RDM, firstly described in Dörfler et al., 2014) is utilized as main fabrication method, deploying varying compositions of local building debris, lime mortar, and sand, via a throwing arm. This research explores a method of continuous verification of material deployment and removal of material oversaturation to guarantee accuracy. Herefore, all instances of the robot ecology are in direct communication with one another and the user for verification, adaptation, and information. The proposed framework is examined through experimentation by designing, building, and implementing an inter-communicative network of bespoke semi-autonomous robots with all proposed parts of the system.
keywords Construction Automation, Material Reuse, Onsite Construction, Self Verifying System, Robot Ecology, Additive Manufacturing
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_68
id acadia22_68
authors Al Othman, Sulaiman; Bechthold, Martin
year 2022
title Non-Linear Fabrication
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 68-75.
summary This paper describes an improved data collection methodology in the context of clay 3D printing that integrates structured light scanning tech- nology. The ultimate goal is to use this data for toolpath calibration during the next step of the research. The integrated process measures and then addresses the deflections caused by the successive build-up of clay layers that cause changes in stiffness across the lower printed layers, distortions and shifting of clay beads caused by extrusion pressure and nozzle maneuvering, and air gaps in the clay mix that affect the material flow rate.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id acadia22_268
id acadia22_268
authors Hammett, Levi; Abbass, Fatima; Al Saad, Hind; Suleiman, Mohammad
year 2022
title Alternative Typographic Histories
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 268-271.
summary This speculation of alternative typographic histories is an attempt to re-examine the evolutionary path of the Arabic script within inherited technological constraints. this work aims to uncover new pathways for the development of the Arabic script in order to add new perspectives to the contemporary type design discourse.
series ACADIA
type field note
email
last changed 2024/02/06 14:00

_id caadria2022_255
id caadria2022_255
authors Wu, Zihao, Zhang, Yunsong and Tong, Ziyu
year 2022
title Quantification of the Thermal Environmental Value of Urban Pores: A Case Study of Nanjing
doi https://doi.org/10.52842/conf.caadria.2022.2.719
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 719-728
summary The term "Urban pores‚ refers to the space formed by the enclosure of buildings, which have great value for regulating the microclimate. Many previous studies have focused only on a single urban pore section, ignoring the spatial distribution at the urban scale. In this study, the openness of urban pores in Nanjing was quantified and grouped, and then the spatial distribution characteristics of each openness group were further calculated. Based on this, the study combined the spatial distribution characteristics of urban pores with urban thermal environment data and an LCZ urban form classification model to analyse the impact of urban pores on the urban thermal environment. The results show that 1) the impact of urban pores is greater in summer and autumn, where its spatial agglomeration has a higher cooling value for the urban thermal environment, while this is not significant in winter; 2) the spatial agglomeration of urban pores in the high openness group, mid-high openness group and mid-low openness group have a higher cooling effect, which mainly corresponds to water, open spaces or parks and urban roads. These spaces should be given more attention when developing urban design strategies. The results can provide some references for urban development.
keywords urban pores, openness, spatial distribution, urban thermal environment, local climate zone (LCZ), SDG 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id architectural_intelligence2022_11
id architectural_intelligence2022_11
authors Patrik Schumacher
year 2022
title The metaverse as opportunity for architecture and society: design drivers, core competencies
doi https://doi.org/https://doi.org/10.1007/s44223-022-00010-z
source Architectural Intelligence Journal
summary The thesis is that the metaverse will become a pervasive part of the future internet and will thus become a key arena within which the life of society unfolds. As three-dimensional, immersive virtual world, the metaverse will be designed by architects rather than graphic designers. After 30 years of theoretical speculation and technological advances the internet is finally on the way to transforming in ways envisioned with the concept of ‘cyberspace’. The key analogy is no longer the magazine with separate pages but the city and its seamless web of spaces. The paper argues that this immersive internet delivers a superior, more productive platform for social exchange and communication. Co-location synergies will unfold and order the distribution of sites and enable an intuitive browsing navigation full of discoveries and serendipitous encounters, as well as creating sites for vivid crowd interactions. It is this superiority that will lead to architects taking over from graphic designers as profession owning the design of all online interaction frames. This paper explores the plausibility of this takeover and the attendant expansion of architecture’s competency.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id architectural_intelligence2022_1
id architectural_intelligence2022_1
authors Philip F. Yuan
year 2022
title Launch editorial
doi https://doi.org/https://doi.org/10.1007/s44223-022-00002-z
source Architectural Intelligence Journal
summary Architectural Intelligence, guided by scientific design thinking, focuses on the three future scenarios of smart habitat, virtual habitat, and space habitat. Utilizing evidence-based architectural research methods, Architectural Intelligence reconstructs the architectural knowledge system and creates an international academic platform of multi-disciplines, establishing a new paradigm for sustainable development. In the first place, it is necessary to define architectural intelligence. In her book Architectural Intelligence: How Designers and Architects Created the Digital Landscape, Molly Wright Steenson argued that intelligence is rather expressed in design processes and tools, computer programs, interfaces, and digital environments and it includes all forms of intelligence involved with the built environment.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id sigradi2023_243
id sigradi2023_243
authors O. Oporto, Italo, Martínez Arias, Andrea and Villouta Gutierrez, Daniela
year 2023
title Iluminación y configuración espacial: Una metodología de análisis íntegra: El caso del Servicio de Psiquiatría Guillermo Grant Benavente en Concepción, Chile.”
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 385–396
summary Our everyday environment plays a significant role in shaping our social and emotional interactions. It has been empirically evidenced that natural daylight mitigates depression, insomnia, and other disorders (Weber, 2022). This resonates with the fact that individuals with disrupted circadian rhythms are more susceptible to mental health perturbations (Menculini et al., 2018). The current investigation delves into the correlation between luminosity and spatial configuration within the Guillermo Grantt Benavente Psychiatry Service in Concepción, Chile. The contention is that proficient spatial connectivity and exposure to natural daylight can potentially enhance therapeutic dimensions. The overarching objective is to comprehend this nexus for formulating an architectural design methodology. Specific objectives encompass: 1. Defining the communal spaces under scrutiny; 2. Analyzing luminosity and spatial attributes. The methodological approach encompasses a hybrid framework encompassing interviews, spatial analysis, and illuminance measurements. An intricate interrelationship among preferred spaces, illuminance, and spatial characteristics is anticipated.
keywords Environment, Lighting, Space Syntax, Mental health, Psychiatric residence
series SIGraDi
email
last changed 2024/03/08 14:07

_id caadria2022_278
id caadria2022_278
authors Ortner, F. Peter and Tay, Jing Zhi
year 2022
title Optimizing Design Circularity: Managing Complexity in Design for Circular Economy Through Single and Multi-Objective Optimisation
doi https://doi.org/10.52842/conf.caadria.2022.1.191
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
summary This paper advances the application of computational optimization to design for circular economy (CE) by comparing results of scalarized single-objective optimization (SOO) and multi-objective optimization (MOO) to a furniture design case study. A framework integrating both methods is put forward based on results of the case study. Existing design frameworks for CE emphasize optimization through an iterative process of manual assessment and redesign (Ellen MacArthur Foundation, 2015). Identifying good design solutions for CE, however, is a complex and time-consuming process. Most prominent CE design frameworks list at least nine objectives, several of which may conflict (Reike et al., 2018). Computational optimization responds to these challenges by automating search for best solutions and assisting the designer to identify and manage conflicting objectives. Given the many objectives outlined in circular design frameworks, computational optimisation would appear a priori to be an appropriate method. While results presented in this paper show that scalarized SOO is ultimately more time-efficient for evaluating CE design problems, we suggest that given the presence of conflicting circular design objectives, pareto-set visualization via MOO can initially better support designers to identify preferences.
keywords Design for Circular Economy, Computational Optimisation, Sustainability, Design Optimisation, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2023_042
id ascaad2023_042
authors Žigmundová, Viktória; Suchánková, Kateøina; Stretavská, Antónia; Míèa, Jakub; Rayne, Taylor; Tsikoliya, Shota ; ,
year 2023
title Additive Manufacturing of Mycelium Composites for Sustainable Landscape Architecture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 863-877.
summary This study explores the potential of mycelium composites as a sustainable and eco-friendly material for landscape architecture in the context of today's global climate and environmental crisis. Mycelium, the vegetative part of fungi, has shown promising properties such as acoustic and thermal insulation, biodegradability, and environmental performance (Vasatko et al., 2022). The central remit of this research is in proposing bespoke computational and robotic fabrication methods and workflows for investigating the performance of mycelial materials and observing their properties and growth response. Taken together, the topic of this paper is to illustrate the application and composition of such fabrication techniques as an integrated multi-material system, capable of combining the complex, organic relationships between clay, lignocellulosic substrate, and fungi with a focus on the potential of such composite materials for implementation within the built environment. Outlined here are the processes and procedures essential to this multi-material fabrication framework, including a detailed account of a series of substrate material mixtures and printed clay scaffold geometries, both of which exhibit properties informed by the material synthesis and fabrication process. We foremost propose the strategic mixing of different substrate types to be 3D printed with clay as a strategy for probing the optimization of mycelial overgrowth and binding to the 3D printed geometries. Subsequently, we proceed in detailing the study’s approach and process of 3D printing the mixtures of recycled material, drying the geometry, and sterilizing the final design once inoculated with the mycelium. Ultimately, we motivate this research in pursuit of further understanding of mycelium's material and mycoremediation capacities in service of more environmentally responsive and responsible architectural applications.
series ASCAAD
email
last changed 2024/02/13 14:34

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_604
id acadia22_604
authors Adel, Arash
year 2022
title Co-Robotic Assembly of Nonstandard Timber Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 604-613.
summary This paper presents a novel approach for the construction of nonstandard timber structures made from regionally sourced short dimensional lumber, which is enabled through human-robot collaborative assembly (HRCA). To address the research question, three main research objectives are identified and experimentally explored: 1) Characterization of a comprehensive construction process, which consists of off-site HRCA of bespoke timber sub-assemblies, 2) Development of a suitable constructive system for robotic assembly, making feasible the realization of articulated structures out of short timber elements, and 3) Incorporation of these techniques and their constraints into an integrative digital design and fabrication method and implementation of a continuous digital design-to-fabrication workflow. 
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia22_156
id acadia22_156
authors Agraviador, Armand; Scott, Jane; Kaiser, Romy; Elsacker, Elise; Hoenerloh, Aileen; Topcu, Ahmet; Bridgens, Ben
year 2022
title BioKnit
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 156-167.
summary The paper discusses how catenary geometry was used to define parameters for knitting and mycelium, and how they were applied to the design of a 3D knit preform. In addition, the paper evaluates the success of the bespoke growth chamber fabricated for this research. The growth chamber was designed to support the hanging preform as a catenary vault during growing and to optimize mycelium growth via environmental controls. Findings of the research highlight the significance of computational methods to enable the design and construction of biohybrid textile systems that move from an assimilation of discrete material elements with defined boundaries to a cohesive technological approach.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_444662 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002