CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id ascaad2022_000
id ascaad2022_000
authors El-Bastawissi, Ibtihal Y.; Abdelmohsen, Sherif
year 2022
title ASCAAD 2022: Hybrid Spaces of the Metaverse
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, 743 p.
summary The ASCAAD 2022 theme focuses on Hybrid Spaces of the Metaverse, with the aim of unraveling the opportunities and potentials of architecture in the age of the Metaverse. Historically space was always the container of people’s activities and memories; it is the collective reflection of their life styles. Walls, floors and ceilings of architectural spaces witnessed the moments of joy and happiness, as well as moments of misery that changed human history, from the signing of the United Nations Declaration post WWII, to the first I-phone sold in the Apple store; history is written inside architectural spaces. The new era of the 4th industrial revolution, which is associated with digital transformation, will unlock new opportunities for architects, interior designers and whoever will enter the domain of the metaverse. The metaverse will not only serve as a portal to a new world, but also as an extension to new activities such as commercial, social, educational and business activities that will thrive in the new virtual realm. The metaverse will act as the natural transcendence of technological advancements carrying new potentials to the architectural profession. Active Worlds, Second Life, Roblox and Fortnite are all early versions of what we will witness in the next few years, shifting from entertainment to full commercial, official and governmental activities; all will be hosted inside virtual and hybrid spaces. A new era will start inside virtual realms; real economy will rise inside virtual architecture but without the multiple physical or structural constraints that limit physicality anymore such as gravity, and day and night cycles; no oxygen is needed anymore. But this time, human activities will not only be recorded and saved but also attended and lived in real time. Computational design will continue to thrive and even evolve into new forms aligning with new changes and challenges of the metaverse. Hybrid spaces are the spaces that will be built as a virtual extension of real spaces. They will be in connection to real spaces and reflecting their activities on a real time basis. On the other hand, pure virtual spaces will occur, trespassing time zones and geographical barriers. The importance of hybrid experiences was most realized after the pandemic lockdowns; and now is the time to invent new design methodologies and new theories as a natural transcendence of architecture profession. Hyperlinks portals replacing staircases and elevators, physically impossible structures, open budget interiors, teleportation are all new notions emerging with the new domain. Today, virtual spaces are hosted on various cloud services and registered as Non-Fungible Tokens (NFTs). They are experienced as immersed spaces using headsets or semi immersed spaces presented through laptops and/or mobile screens. With the new accelerating pace of technology, there is high possibility for integration within our neural networks to be experienced in our minds with just closing our eyes in the near future.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaade2022_250
id ecaade2022_250
authors Garcia del Castillo y Lopez, Jose L.
year 2022
title The Digital Touch - Towards novel modeling frameworks for robotically-enhanced marble sculpting
doi https://doi.org/10.52842/conf.ecaade.2022.1.037
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 37–46
summary In this paper, two case studies on digital modeling for robotically-enabled marble carving are presented. In the first one, an interactive, gesture-based modeling framework was developed to sculpt a large, undulating and ultra-thin marble surface. On the second one, an integrated 3D-scanning-to-milling solution was created, in order to groove a superficial pattern on the surface of a discarded marble boulder. The cases evidence the power of tangible interaction to serve as input to novel digitally-aided marble sculpting processes, and the capacity of integrated generative design workflows to create consistent solutions to variable conditions, in this case, with a particular focus on sustainability and reclaiming of scrap materials.
keywords Robotic Fabrication, Generative Design, Modeling, Sculpting
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22pr_148
id acadia22pr_148
authors Jung,, Francisco; Al Othman, Sulaiman; Im, Hyeonji Claire; García del Castillo y López, Jose Luis; Bechthold, Martin
year 2022
title Responsive Spatial Print Trajectory: 3D Printing of Clay Lattices with Self-Corrective Recalibration
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 148-153.
summary This project presents a novel method of spatially printing clay lattices by controlling fabrication parameters such as the printing head speed and the material extrusion rate following a 3D-choreographed toolpath. Spatial printing refers to the unrestricted movement of the printer nozzle in three axes (x, y, z) when extruding material, as opposed to the conventional 2-axis layer-by-layer deposition that is very slow and results in increased operational costs. This method—enhanced with an integrated industrial laser displacement sensor to collect deflection data subsequently used to calibrate the next layer toolpath geometry in real- time—works optimally with carbon-fiber reinforcements for increased tensile performance.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id sigradi2023_243
id sigradi2023_243
authors O. Oporto, Italo, Martínez Arias, Andrea and Villouta Gutierrez, Daniela
year 2023
title Iluminación y configuración espacial: Una metodología de análisis íntegra: El caso del Servicio de Psiquiatría Guillermo Grant Benavente en Concepción, Chile.”
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 385–396
summary Our everyday environment plays a significant role in shaping our social and emotional interactions. It has been empirically evidenced that natural daylight mitigates depression, insomnia, and other disorders (Weber, 2022). This resonates with the fact that individuals with disrupted circadian rhythms are more susceptible to mental health perturbations (Menculini et al., 2018). The current investigation delves into the correlation between luminosity and spatial configuration within the Guillermo Grantt Benavente Psychiatry Service in Concepción, Chile. The contention is that proficient spatial connectivity and exposure to natural daylight can potentially enhance therapeutic dimensions. The overarching objective is to comprehend this nexus for formulating an architectural design methodology. Specific objectives encompass: 1. Defining the communal spaces under scrutiny; 2. Analyzing luminosity and spatial attributes. The methodological approach encompasses a hybrid framework encompassing interviews, spatial analysis, and illuminance measurements. An intricate interrelationship among preferred spaces, illuminance, and spatial characteristics is anticipated.
keywords Environment, Lighting, Space Syntax, Mental health, Psychiatric residence
series SIGraDi
email
last changed 2024/03/08 14:07

_id caadria2022_472
id caadria2022_472
authors Perry, Gabriella and Garcia del Castillo y Lopez, Jose Luis
year 2022
title Droop ‚ An Iterative Design Tool for Material Draping
doi https://doi.org/10.52842/conf.caadria.2022.2.283
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 283-292
summary Advances in large-scale 3D printing technology have opened up explorations on novel non-solid, non-layered 3D printing techniques such as spatial lattices and material draping. These new printing techniques have potential to reduce the wasted material from printing support structures and optimize overall material use. However, due to the inherent material unpredictability of many of these systems, they are often difficult to approximate with digital tools, often requiring simple trial and error to achieve a specific result, with the consequent waste of time and resources. Droop is a work in progress material-informed simulation environment that serves as an iterative design tool for material draping fabrication processes. Droop explores the material potential of thermoplastics through the fabrication process of robotic draping to achieve complex linked catenary forms. This bespoke simulation environment approximates the spatial form of a material draping process and serves as a useful iterative design tool that allows designers to better understand and predict how a 2D pattern translates into a 3D droop form. The simulation also reduces the amount of wasted material produced by trial-and-error material draping processes. In this paper, we present the digital simulation framework, discuss methods for material-informed calibration, and show a set of experiments produced with this tool.
keywords Material Draping, Physics Simulation, Additive Manufacturing, Robotic Fabrication, Catenary Geometry, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

No more hits.

HOMELOGIN (you are user _anon_551223 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002