CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 4 of 4

_id caadria2022_82
id caadria2022_82
authors Globa, Anastasia, Reinhardt, Dagmar, Keane, Adrienne and Davies, Peter
year 2022
title Building Resilience - Using Parametric Modelling and Game Engines to Simulate the Impacts of Secondary Structures in Bushfire Events
doi https://doi.org/10.52842/conf.caadria.2022.2.749
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 749-758
summary Bushfires are a global phenomenon, closely connected to climate change and safety, resilience and sustainability of cities and human settlements. Government agencies, architects and researchers across institutions are committed to improving Australia‚s resilience to bushfires yet grappling with ways to further mitigate risks. ‚Build back better‚ is the often-used phrase to support bushfire resilience, yet there remains a limited understanding of how secondary structures, such as storage sheds, garages, and fences contribute to or mitigate fire loss. These secondary structures are integral to properties yet fall, largely, outside land use planning approval processes and other regulations. Computational modelling can be adapted to deliver visualisations that increase awareness. We developed several simulation approaches which addressed distances, relationship to and the construction materials of secondary structures, terrain slopes and environmental forces. We conclude that gaming engines may offer the optimal immersive opportunity for residents and others to visualise fire risks related to secondary structures to increase awareness and improve bushfire readiness behaviours.
keywords bushfire, auxiliary structures, game engine, visualisation modelling, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_108
id acadia22_108
authors Globa, Anastasia; Lyu, Kun; Gocer, Ozgur; Yildirim, Muhammed
year 2022
title Implementation of Interactive Virtual Sites for Architectural Education
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 108-119.
summary This study proposes that an alternative development workflow for hybrid learning can be implemented using a commercially available VR tour software application, 3DVista, that requires much less time and effort to produce virtual environments. The proposed alternative was compared with a popular gaming engine Unity. This paper presents a comparative experimental study that tests the implementation of these two workflow approaches used for site visits and design explorations for architectural education. 
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id caadria2022_263
id caadria2022_263
authors Gough, Phillip, Globa, Anastasia and Reinhardt, Dagmar
year 2022
title Computational Design with Myco-Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.649
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 649-658
summary A sustainable, circular, post-carbon economy of the future will take waste material from one part of the economy and give it new value. This will reduce energy and material leakage from the economy and create new opportunities for innovation in materials. Myco-materials provide an opportunity to transform ligno-cellulosic matter, such as waste cardboard and sawdust, into useful materials. This is achieved by using a fungus to bind together these substrates into useful forms. This paper explores how computational design parameters can be informed from the mycelia growth process. We created several prototype forms that show behaviour of myco-materials through the growing and drying process. These show how inclusion of cardboard substructures may improve the performance of the resulting material by increasing its stability during the drying process. We also demonstrate limits to the size of myco-materials through computational design. Myco-materials will likely be part of a sustainable post-carbon economy, by bringing new value to waste material, and this paper shows how computational design can be informed by mycelial growth.
keywords Mycelia, Biodesign, Growing Designs, Computational Design, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_558
id acadia22_558
authors Borhani, Alireza; Kalantar, Negar; Azari, Erfan Rezaei; Muliana, Anastasia; Shahid, Zaryab; Green, Ed ; ,
year 2022
title The Sound of Kerfing
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 558-573.
summary By examining the reciprocal relationship between kerf patterns and the soundscape of indoor spaces, this study presents a systematic approach to designing and fabricating kerf panels that address both aesthetic and acoustic qualities. Specifically, the authors demonstrate a potential application of kerfing in a permanent installation in a gallery space named “Kerfonic Wall.”
series ACADIA
type paper
email
last changed 2024/02/06 14:04

No more hits.

HOMELOGIN (you are user _anon_790944 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002