CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 12 of 12

_id caadria2022_424
id caadria2022_424
authors May, Kieran, Walsh, James, Smith, Ross, Gu, Ning and Thomas, Bruce
year 2022
title UnityRev - Bridging the gap between BIM Authoring platforms and Game Engines by creating a Real-Time Bi-directional Exchange of BIM data
doi https://doi.org/10.52842/conf.caadria.2022.2.527
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 527-536
summary We present UnityRev: An open-source software package that enables a workflow designed to facilitate a real-time bi-directional and synchronous exchange of Building Information Modelling (BIM) data, by creating a direct link between a BIM authoring platform (i.e. Autodesk Revit) and a game engine (i.e. Unity 3D). Although previous works have explored the integration of BIM with game engines, the currently available tools are limited to a non-synchronous or uni-directional exchange of BIM data, and they do not address specific design issues required to make a BIM authoring platform and game engine compatible (i.e. parametric modelling). This paper describes our software which consists of a compact overview of the system, including design decisions, implementation details, and system capabilities. Two example applications are presented as concept demonstrators to -10795864108000showcase practical collaborative use-case scenarios between BIM authoring platforms and game engines which were not previously achievable without a real-time bi-directional workflow. This work will expand future Computer Aided Architectural Design (CAAD) research, and more specifically, Virtual Reality (VR)/Augmented Reality (AR) based BIM development and integration, by providing new possibilities and bridging the gap between BIM authoring platforms and game engines. The application of the system as demonstrated in the paper for real-time lighting performance simulation contributes to achieving the UN Sustainable Development Goal 11: Sustainable Cities and Communities.
keywords building information modelling, game engines, revit, unity, virtual reality, augmented reality, lighting performance simulation, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_366
id ecaade2022_366
authors Geropanta, Vasiliki, Karagianni, Anna, Parthenios, Panagiotis, Ampatzoglou, Triantafyllos, Fatouros, Loukas, Simantiraki, Vasiliki, Brokos-Melissaratos, Orestis and Eleftheriadis, Dimitris
year 2022
title Digitalization of Participatory Greening - The case of UnionYouth in Chania
doi https://doi.org/10.52842/conf.ecaade.2022.1.469
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 469–478
summary The contemporary climate crisis pushed communities of actors, cities and citizens to use smart technology, digital platforms, and data-based intelligence to steer creative solutions for greening in their urban ecosystems. This phenomenon brought about an increasing imperative for citizen participation and inclusion, in the co-design of green infrastructures, suggesting alternative ways to deal with the lack or misuse of public space. In this framework, this paper analyzes the case of ''UnionYouth in Chania'', a project that aims a) to build an environmental awareness strategy for Generation Z, b) to promote capacity-building processes related to climate change and environmental protection, c) actually transform the city public space through participatory processes. Specifically, the project describes the creation of a digital platform and a mobile app consisting of several engagement tools that allow interaction between the digital community of youth, the city's decision-makers, and city greening actors. Therefore, the first part of the paper talks about the necessity of promoting today's participatory processes in the city for climate change mitigation through a literature review that emerged in the last decade. The second part of the paper examines a case study, namely UnionYouth in Chania, a digital collaborative platform that promotes methods for greening the city through district-based, activity-based, and network-based redesign solutions. The third part of the paper brings about interesting reflections on the relationship between the analog and digital world, and how bottom-up processes may be an important tool in city planning. The overall scope of the analysis of the specific case study is to bring insights into the architectural world, as a means to create more bridges with citizens and communities and contribute to their greening understanding.
keywords Climate Change, Generation Z, Green Infrastructure, Raise Awareness, Mobile Application, Participatory Design, Smart City
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_366
id acadia22_366
authors Hauptman, Jonas; Haghnazar, Ramtin; Moghaddam, Sara Saghafi
year 2022
title Developing a Digital Design Workflow for Nexorade Bamboo Structure
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 366-377.
summary This paper presents a case study integrating generative design and bamboo culm geometries. Our goal is to improve the application of biological materials in a responsive Computer-Aided Design (CAD) process. While employing eccentric biological materials such as bamboo imposes an added layer of complexity on the design-to-fabrication process, it may also offer more sustainable material application and expand the frontiers of design and fabrication research methods. The methods explored in this paper are deployed to realize freeform Nexorade structures (FNS) that are explicitly tailored to individual bamboo culms (BC); each of these has been measured to explore the potential that material eccentricity may be a district benefit rather than a detriment to the quality and efficiency of a design.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ijac202220308
id ijac202220308
authors Rodrigues, Ricardo C; Rovenir B Duarte
year 2022
title Generating floor plans with deep learning: A cross-validation assessment over different dataset sizes
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 630–644
summary The advent of deep learning has enabled a series of opportunities; one of them is the ability to tackle subjective factors on the floor plan design and make predictions though spatial semantic maps. Nonetheless, the amount available of data grows exponentially on a daily basis, in this sense, this research seeks to investigate deep generative methods of floor plan design and its relationship between data volume, with training time, quality and diversity in the outputs; in other words, what is the amount of data required to rapidly train models that return optimal results. In our research, we used a variation of the Conditional Generative Adversarial Network algorithm, that is, Pix2pix, and a dataset of approximately 80 thousand images to train 10 models and evaluate their performance through a series of computational metrics. The results show that the potential of this data-driven method depends not only on the diversity of the training set but also on the linearity of the distribution; therefore, high-dimensional datasets did not achieve good results. It is also concluded that models trained on small sets of data (800 images) may return excellent results if given the correct training instructions (Hyperparameters), but the best baseline to this generative task is in the mid-term, using around 20 to 30 thousand images with a linear distribution. Finally, it is presented standard guidelines for dataset design, and the impact of data curation along the entire process
keywords Dataset Reduction, Pix2pix, Artificial Intelligence, Deep Generative Models, GANs
series journal
last changed 2024/04/17 14:30

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_109
id ecaade2022_109
authors Kulcke, Matthias and Lorenz, Wolfgang E.
year 2022
title Multilayered Complexity Evaluation within Configurators for Design - Responsible collaborative systems for architectural and product design
doi https://doi.org/10.52842/conf.ecaade.2022.2.009
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 9–18
summary This paper describes the concept of integrating several complexity evaluation methods, previously developed and tested by the authors, into one product configurator through a technical prototype. In this case variations of an online configurator for design products based on a choice of these digital complexity evaluation methods developed between 2015 and 2020 are presented. This research shows that an integration of complexity evaluation for several Gestalt qualities in one product configurator is feasible, though the amount of aspects of each of these qualities and the necessary effort to be invested to achieve an integration that is suitable for customer use may vary. The concept is illustrated using a simple test case, i.e. an online shelf configurator.
keywords Configuration, Mass Customization, Complexity, Gestalt
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_143
id ecaade2022_143
authors Talmor-Blaistain, Anat and Fisher-Gewirtzman, Dafna
year 2022
title Developing an Interactive Method for Generation and Evaluation of Urban Environments
doi https://doi.org/10.52842/conf.ecaade.2022.2.267
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 267–276
summary The ongoing increase in the population sizes of urban dwellers around the globe translates into dense and crowded neighborhoods that may negatively impact residents’ well-being. This research study presents a novel process for creating, evaluating, and filtering a range of suitable urban planning alternatives at the neighborhood scale, using generative tools and computerized analytical tools. This innovative model enables the proposal of a range of planning alternatives during the initial planning stages when changes can be made simply and without incurring unnecessary costs. Generative approaches that find optimal solutions tend to process that resemble the “black box”. This can Couse the designer to feel a lack of involvement in the process. Therefore, the suggested method emphasizes interactions between the designer and computerized tools, providing an applicable algorithm that supports the designer in the decision-making process.
keywords Generative Urban Design, New Urbanism Theory, Dynamic Visibility Analysis (DVA), Daylight Analysis, Design Alternatives Filtering
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_113
id ecaade2022_113
authors van Son, Nicholas A. and Prado, Marshall
year 2022
title Computational Schematic Design Utilizing Self-Organizing Programmatic Agents - A novel approach to visualizing and organizing urban and architectural data
doi https://doi.org/10.52842/conf.ecaade.2022.2.095
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 95–104
summary Architectural design requires the negotiation of a wide variety of often conflicting constraints and conditions. This puts a tremendous burden on designers to understand and evaluate all the design and site parameters in the conceptual phase of the project. Design methodologies that utilize conventional means of representation such as site diagrams, maps, or other orthographic projections may not be adequate to produce truly integrative design solutions. They often simplify conditions for user clarity or eliminate volumetric and temporal data entirely. As computational design tools develop and the mapping of georeferenced urban data becomes more commonplace, it becomes possible to integrate spatial information into design strategies and evaluate various relationships more effectively. Taking clues from medical imaging, voxel data is used to represent volumetric gradients in material properties and densities of spatial conditions. This method can be used to generate morphogenic spatial analysis of an existing site. The research presented here explores how self-organizing programmatic agents can use this analysis and embedded behaviors to visualize performative schematic design scenarios. These agents, which represent a variety of functional spaces, programmatic requirements, design constraints, and value sets, can negotiate the myriad of environmental and socio- economic site conditions as well as interact with other adaptive programmatic spaces. Each agent can iteratively search for the space that best suits the desired conditions of its program. Various agents compete for space so the overall performance of the spatial arrangement is maximized. This self-organizing spatial system presents a novel and viable means for designers to more effectively implement both urban data and computational design methods into architectural design scenarios.
keywords Agent-based Modeling, Voxels, Generative Design, Self-Organizing, Urban Data Mapping, Optimization, Spatial Analysis
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_272
id sigradi2022_272
authors Fernandez Gonzalez, Alberto; Ng, Provides
year 2022
title Round The Table, Education without the 2d frame constraints: a WebVR experience from a glocal perspective
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1017–1028
summary Round-the-Table, as a researcher-led initiative, was an experimental virtual roundtable in a 3D format that invited twenty-one organisations worldwide from education, research, and technology to open a broad dialogue about a more sustainable, inclusive, interactive, and accessible educational environment, which may help pedagogical communication beyond the 2D frame. This was made possible by the implementation of a Web-VR platform supported by Mozilla, by which each participant had the opportunity to co-create with the organisers, a collaborative immersive sensory experience, together with the simultaneous dialogue between Local and Global. Participants were asked two critical questions: ‘decentralised education’ and ‘phygital exchanges’ : how can we work beyond the 2d frame and how to distribute tasks between physical and digital. The responses were by far diverse, but it was indeed possible to map a cohesive picture from this cloudy but colourful panorama.
keywords Hybrid Education, volumetric roundtable, planetary classroom, virtual reality, phygital exchange
series SIGraDi
email
last changed 2023/05/16 16:57

_id sigradi2022_52
id sigradi2022_52
authors Frutuôso, Joyce; Pereira, Liryan; Verniz, Debora; Pontes, Thiago; Santos, Deborah
year 2022
title JOI - Personal equipment to manipulate knobs without direct hands contact
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 983–992
summary The contagious COVID-19 pandemic made it necessary to adopt strategies to avoid contamination. COVID-19 spreads when someone is in direct contact  with small droplets and particles that contain the virus. These droplets and particles can be active on surfaces that are shared by many people, so hand sanitation became an important aspect to prevent virus contamination. However, products for hand sanitation may not be available easily everywhere. Moreover, the excessive use of products like hand sanitizers and hand soaps can cause dryness and dermatitis on certain users. This paper describes the rapid prototyping of JOI, a device for users to avoid touching doorknobs, door bolts, switchers, and call buttons.  The device was 3D printed (more than 400 units) and distributed to an academic community, which then answered a usability survey. Results show that the device is efficient to avoid the direct contact of users  and surfaces that may be contaminated.
keywords COVID-19, Digital Fabrication, 3D Print, Personal Protective Equipment, Good Health and Well-Being
series SIGraDi
email
last changed 2023/05/16 16:57

_id ascaad2022_087
id ascaad2022_087
authors Mallasi, Zaki
year 2022
title A Pixels-Based Design Approach for Parametric Thinking in Patterning Dynamic Facades
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 654-673
summary In today’s Architectural design process, there has been considerable advancements in design computation tools that empowers designer to explore and configure the building façades schemes. However, one could formally argue that some processes are prescribed, lacks automation and are only for the purpose of visualizing the aesthetic design concepts. As a result, these design concept explorations are driven manually to exhibit variations between schemes. To overcome such limitations, the development presented here describes a proactive approach to incorporate parametric design thinking process and Building Information Modeling (BIM). This paper reports on an ongoing development in computational design and its potential application in exploring an interactive façade pattern. The objective is to present the developed approach for exploring façade patterns that responds parametrically to design-performance attractors. Examples of these attractors are solar exposure, interior privacy importance, and aesthetics. It introduces a paradigm-shift in the development of design tools and theory of parameterization in architecture. This work utilizes programming script to manipulate the logic behind placement of faced panels. The placement and sizes for the building facade 3D parametric panels react to variety of Analytical Image Data (AID) as a source for the design-performance data (e.g.: solar exposure, interior privacy importance, and aesthetics). Accordingly, this research developed the PatternGen(c) add-on in Autodesk ® Revit that utilizes a merge (or an overlay) of AID images as a source to dynamically pattern the building façade and generate the facade panels arrangement rules panels on the building exterior. This work concludes by a project case study assessment, that the methodology of applying AID would be an effective dynamic approach to patterning façades. A case-study design project is presented to show the use of the AID pixel-gradient range from Red, Green and Blue as information source value. In light of the general objectives in this study, this work highlights how future designers may shift to a hybrid design process.
series ASCAAD
email
last changed 2024/02/16 13:29

_id cdrf2022_499
id cdrf2022_499
authors Yuxuan Wang, Yuran Liu, Riley Studebaker, Billie Faircloth, and Robert Stuart-Smith
year 2022
title Ceramic Incremental Forming–A Rapid Mold-Less Forming Method of Variable Surfaces
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_43
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Following architectural practice’s widespread adoption of 3D modelling software, the digital design of free-form surfaces has enabled more heterogeneously organized architectural assemblies. However, fabricating envelope components with double-curved surface geometry have remained a challenge, involving significant machine time and material waste, and great expense to produce. This proof-of-concept project proposes a rapid, low-cost, and minimal-waste approach to forming double curved ceramic components through a novel approach to Ceramic Incremental Forming (CIF), using a 6-axis industrial robot, a passive flexible mold, and a custom ball-rolling tool. The approach is comparable to Single Point Incremental Forming (SPIF) that is used for forming complex shapes with metal sheets. This method promises to achieve high-quality, ceramic building envelope components, while eliminating the need to build proprietary molds for each shape and reducing the waste in the forming process. Compared with other architectural mold-less forming methods such as clay 3D printing, the approach is more time and material efficient, while being able to achieve similar levels of complexity. Thus, CIF may offer potential for further development and industrial applications.
series cdrf
email
last changed 2024/05/29 14:03

No more hits.

HOMELOGIN (you are user _anon_767444 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002