CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 507

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ecaade2022_234
id ecaade2022_234
authors Afsar, Secil, Estévez, Alberto T., Abdallah, Yomna K., Turhan, Gozde Damla, Ozel, Berfin and Doyuran, Aslihan
year 2022
title Activating Co-Creation Methodologies of 3D Printing with Biocomposites Developed from Local Organic Wastes
doi https://doi.org/10.52842/conf.ecaade.2022.1.215
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 215–224
summary Compared to the take-make-waste-oriented linear economy model, the circular model has been studied since the 1980s. Due to consumption-oriented lifestyles along with having a tendency of considering waste materials as trash, studies on sustainable materials management (SMM) have remained at a theoretical level or created temporary and limited impacts. To ensure SMM supports The European Green Deal, there is a necessity of developing top-down and bottom-up strategies simultaneously, which can be metaphorized as digging a tunnel from two different directions to meet in the middle of a mountain. In parallel with the New European Bauhaus concept, this research aims to create a case study for boosting bottom-up and data-driven methodologies to produce short-loop products made of bio-based biocomposite materials from local food & organic wastes. The Architecture departments of two universities from different countries collaborated to practice these design democratization methodologies using data transfer paths. The 3D printable models, firmware code, and detailed explanation of working with a customized 3D printer paste extruder were shared using online tools. Accordingly, the bio-based biocomposite recipe from eggshell, xanthan gum, and citric acid, which can be provided from local shops, food & organic wastes, was investigated concurrently to enhance its printability feature for generating interior design elements such as a vase or vertical gardening unit. While sharing each step from open-source platforms with adding snapshots and videos allows further development between two universities, it also makes room for other researchers/makers/designers to replicate the process/product. By combining modern manufacturing and traditional crafting methods with materials produced with DIY techniques from local resources, and using global data transfer platforms to transfer data instead of products themselves, this research seeks to unlock the value of co-creative design practices for SMM.
keywords Sustainable Materials Management, Co-Creation, Food Waste, 3D Printing, New European Bauhaus
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_156
id acadia22_156
authors Agraviador, Armand; Scott, Jane; Kaiser, Romy; Elsacker, Elise; Hoenerloh, Aileen; Topcu, Ahmet; Bridgens, Ben
year 2022
title BioKnit
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 156-167.
summary The paper discusses how catenary geometry was used to define parameters for knitting and mycelium, and how they were applied to the design of a 3D knit preform. In addition, the paper evaluates the success of the bespoke growth chamber fabricated for this research. The growth chamber was designed to support the hanging preform as a catenary vault during growing and to optimize mycelium growth via environmental controls. Findings of the research highlight the significance of computational methods to enable the design and construction of biohybrid textile systems that move from an assimilation of discrete material elements with defined boundaries to a cohesive technological approach.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id caadria2022_277
id caadria2022_277
authors Akbar, Zuardin, Wood, Dylan, Kiesewetter, Laura, Menges, Achim and Wortmann, Thomas
year 2022
title A Data-Driven Workflow for Modelling Self-Shaping Wood Bilayer, Utilizing Natural Material Variations with Machine Vision and Machine Learning
doi https://doi.org/10.52842/conf.caadria.2022.1.393
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 393-402
summary This paper develops a workflow to train machine learning (ML) models with a small dataset from physical samples to predict the curvatures of self-shaping wood bilayers based on local variations in the grain. In contrast to state-of-the-art predictive models, specifically 1.) a 2D Timoshenko model and 2.) a 3D numerical model with a rheological model, our method accounts for natural and unavoidable material variations. In this paper, we only focus on local grain variations as the main driver for curvatures in small-scale material samples. We extracted a feature matrix from grain images of active and passive layers as a Grey Level Co-Occurrence Matrix and used it as the input for our ML models. We also analysed the impact of grain variations on the feature matrix. We trained and tested several tree-based regression models with different features. The models achieved very accurate predictions for curvatures in each sample (R;0.9) and extend the range of parameters that is incalculable by a Timoshenko model. This research contributes to the material-efficient design of weather-responsive shape-changing wood structures by further leveraging the use of natural material features and explainable data-driven modelling and extends the topic in ML for material behaviour-driven design among the CAADRIA community.
keywords data-driven model, machine learning, material programming, smart material, timber structure, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_33
id caadria2022_33
authors Alva, Pradeep, Mosteiro-Romero, Martin, Miller, Clayton and Stouffs, Rudi
year 2022
title Digital Twin-Based Resilience Evaluation of District-Scale Archetypes
doi https://doi.org/10.52842/conf.caadria.2022.1.525
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 525-534
summary District-scale energy demand models can be powerful tools for understanding interactions in complex urban areas and optimising energy systems in new developments. The process of coupling characteristics of urban environments with simulation software to achieve accurate results is nascent. We developed a digital twin through a web map application for a 170ha district-scale university campus as a pilot. The impact on the built environment is simulated with pandemic (COVID-19) and climate change scenarios. The former can be observed through varying occupancy rates and average cooling loads in the buildings during the lockdown period. The digital twin dashboard was built with visualisations of the 3D campus, real-time data from sensors, energy demand simulation results from the City Energy Analyst (CEA) tool, and occupancy rates from WiFi data. The ongoing work focuses on formulating a resilience assessment metric to measure the robustness of buildings to these disruptions. This district-scale digital twin demonstration can help in facilities management and planning applications. The results show that the digital twin approach can support decarbonising initiatives for cities.
keywords Digital twin, City Information Modelling, Planning Support System, energy demand model, SGD 11, SGD 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_478
id cdrf2022_478
authors Andrea Macruz, Mirko Daneluzzo, and Hind Tawaku
year 2022
title Performative Ornament: Enhancing Humidity and Light Levels for Plants in Multispecies Design
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_41
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The paper shifts the design conversation from a human-centered design methodology to a posthuman design, considering human and nonhuman actors. It asks how designers can incorporate a multispecies approach to creating greater intelligence and performance projects. To illustrate this, we describe a project of “ornaments” for plants, culminating from a course in an academic setting. The project methodology starts with “Thing Ethnography” analyzing the movement of a water bottle inside a house and its interaction with different objects. The relationship between water and plant was chosen to be further developed, considering water as a material to increase environmental humidity for the plant and brightness through light reflectance and refraction. 3D printed biomimetic structures as supports for water droplets were designed according to their performance and placed in different arrangements around the plant itself. Humidity levels and illuminance of the structures were measured. Ultimately, this created a new approach for working with plants and mass customization. The paper discusses the resultant evidence-based design and environmental values.
series cdrf
email
last changed 2024/05/29 14:03

_id acadia22_58
id acadia22_58
authors Anton, Ana; Skevaki, Eleni; Bischof, Patrick; Reiter, Lex; Dillenburger, Benjamin
year 2022
title Column-Slab Interfaces for 3D Concrete Printing
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 58-67.
summary 3D Concrete Printing (3DCP) currently dominates the scene of digital fabrication with concrete. 3DCP can be utilized on-site or in prefabrication setups. While prefabrication with 3DCP allows for more complex construction elements, it also requires the design for connections and assembly. In the context of prefabrication using 3DCP, this paper illustrates the state of research in the design, construction, and assembly of 3D printed components. It proposes segmentation and fabrication strategies to produce horizontal and vertical structural members of a column-slab building system following the typology of mushroom slabs.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ascaad2022_120
id ascaad2022_120
authors Bacinoglu, Saadet Zeynep; Cavus, Ozlem
year 2022
title Gamifying Origami: Rule-based Improvisation for Design Exploration
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 595-608
summary Origami, which originated as a folding paper game in Japan, has turned into a source of learning and inspiration for design and engineering studies. Complex two-dimensional patterns of origami sustain visual rules of space transformation. So, this paper proposes to gamify origami to get users more involved in the design space exploration process. For the gamification of origami, the study alters the origami patterns in a 3D modular composition with rules, scoring, and rounds in a design context. Gamifying origami becomes a tool for a learning experience for first-year architecture students in the early design phases. Accordingly, this paper presents a gaming experience model based on origami for the foundation studios. This model consists of three main stages: start, rounds, and finish. The teaching of the model is the mereological relationship providing continuity concerning improvisations with visual rules. The reward is the model complexity, such as folding numbers, and regular or modified folding. The penalty is losing scores if the continuity is not maintained. The presented experience model is performed twice in the foundation studios. The former is for understanding how much preliminary knowledge is required for the first-year students to grasp and complete the game. The second is for testing the experience. The results of the study prove the role of visual reflection-on/in action by creating pauses during the origami design and the importance of sustaining the visual inference with transformations between individuals to experience form to formation, complexity, unity, and creativity in origami design. This study would contribute to the literature on experimental methods for design pedagogy.
series ASCAAD
email
last changed 2024/02/16 13:38

_id sigradi2022_54
id sigradi2022_54
authors Balci, Ozan; Alaçam, Sema
year 2022
title Zone-sensitive RIZOBots in Action: Examining the Behavior of Mobile Robots In a Heterogeneous Environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 397–408
summary This study proposes a framework for the use of mobile robots namely RIZOBots in form studies in the early phases of design. The proposed framework was tested in two experiments. An agent-based model was utilized for the movement of mobile robots, a drawing task was defined as the task. In particular, rule sets for agent-agent and agent-environment interaction were used. Light-sensitivity rules were utilized to achieve agent-environment interaction, apart from obstacle detection. This study focuses on the effects of two different zone-related states on the behavior of RIZOBot which is a configurable differential-drive wheeled robot developed by authors using off-the-shelf products and 3D printed body parts. Two zone types with very basic features are used to define environmental conditions. The traces left on the canvas, the irregularities in the movement of the robots, and the robot-environment interaction will be evaluated in the study. The results and analysis of the two selected experiments are presented and the potential of the proposed framework is discussed.
keywords Robotics, Swarm robotics, Swarm behaviour, Mobile agents, Zone-sensitivity
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2022_218
id ecaade2022_218
authors Bank, Mathias, Sandor, Viktoria, Schinegger, Kristina and Rutzinger, Stefan
year 2022
title Learning Spatiality - A GAN method for designing architectural models through labelled sections
doi https://doi.org/10.52842/conf.ecaade.2022.2.611
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 611–619
summary Digital design processes are increasingly being explored through the use of 2D generative adversarial networks (GAN), due to their capability for assembling latent spaces from existing data. These infinite spaces of synthetic data have the potential to enhance architectural design processes by mapping adjacencies across multidimensional properties, giving new impulses for design. The paper outlines a teaching method that applies 2D GANs to explore spatial characteristics with architectural students based on a training data set of 3D models of material-labelled houses. To introduce a common interface between human and neural networks, the method uses vertical slices through the models as the primary medium for communication. The approach is tested in the framework of a design course.
keywords AI, Architectural Design, Materiality, GAN, 3D, Form Finding
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_292
id ecaade2022_292
authors Baudoux, Gaelle, Calixte, Xaviera and Leclercq, Pierre
year 2022
title Transition between Architectural Ideation and BIM - Towards a new method through semantic building modeling
doi https://doi.org/10.52842/conf.ecaade.2022.2.357
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 357–366
summary Faced with the challenges of the actors' coordination regarding the increasing building complexity, the new digital collective approaches of advanced design raise the problem of the transition between collaborative ideation (first creative moments of deployment of ideas) and the following phases of digital production (including the formalisation of building specifications in BIM models). In response, we aim to develop a digitally instrumented method for moving from conventional architectural graphic documents to the 3D digital models characteristic of BIM. We propose here a detailed formalisation of the ideation-BIM transition problem and a method for managing building information to improve this transition.
keywords Building Information Modeling, Architectural Ideation, Digital Representation, Media Architecture, Semantic Model
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_357
id caadria2022_357
authors Bedarf, Patrick, Szabo, Anna, Zanini, Michele, Heusi, Alex and Dillenburger, Benjamin
year 2022
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Concrete Slab
doi https://doi.org/10.52842/conf.caadria.2022.2.061
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 61-70
summary This paper presents the design and fabrication of a lightweight composite concrete slab prototype using 3D printing (3DP) of mineral foams. Conventionally, concrete slabs are standardized monolithic elements that are responsible for a large share of used materials and dead weight in concrete framed buildings. Optimized slab designs require less material at the expense of increasing the formwork complexity, required labour, and costs. To address these challenges, foam 3D printing (F3DP) can be used in construction as demonstrated in previous studies for lightweight facade elements. The work in this paper expands this research and uses F3DP to fabricate the freeform stay-in-place formwork components for a material-efficient lightweight ribbed concrete slab with a footprint of 2 x 1.3 m. For this advancement in scale, the robotic fabrication and material processing setup is refined and computational design strategies for the generation of advanced toolpaths developed. The presented composite of hardened mineral foam and fibre-reinforced ultra-high-performance concrete shows how custom geometries can be efficiently fabricated for geometrically complex formwork. The prototype demonstrates that optimized slabs could save up to 72% of total concrete volume and 70% weight. The discussion of results and challenges in this study provides a valuable outlook on the viability of this novel fabrication technique to foster a sustainable and resourceful future construction culture.
keywords robotic 3d-printing, mineral foam, stay-in-place formwork, concrete composite, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_312
id ecaade2022_312
authors Bhagat, Puja and Gursoy, Benay
year 2022
title Stretch – 3D Print – Release: Formal descriptions of shape-change in 3D printed shapes on stretched fabrics
doi https://doi.org/10.52842/conf.ecaade.2022.1.301
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 301–310
summary Researchers have previously explored 3D printing 2D shapes on stretched fabrics using plastic filaments. When released, the 3D printed plastic constrains the fabric to take a 3D form. By leveraging the material properties and resultant tension between the rigid plastic and pliable fabric, it is possible to create 3D forms which would otherwise be difficult to construct with traditional fabrication techniques. Multiple factors are in play in this shape-change. Therefore, it is often difficult to anticipate the 3D form that will emerge when the stretched fabric is released. In this paper, we present our systematic bottom-up explorations on the effects of various parameters on shape-change and formalize our findings as rules. These rules help to visualize the interrelations between (abstract) shapes designed for 3D printing, (material) shapes 3D printed on stretched fabric, and (material) shapes that emerge when the fabric is released. The rules also help to explore design possibilities with this technique in a more controlled, communicable, and repeatable way. We also present a series of vaulted forms that we generated using these rules and by stretching - 3D printing - releasing the fabric.
keywords Material Computing, Shape-change, Adaptive Architecture, Digital Fabrication, 3D Printing on Textiles
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220212
id ijac202220212
authors Castriotto, Caio; Felipe Tavares; Gabriela Celani; Olga Popovic Larsen; Xan Browne
year 2022
title Clamp links: A novel type of reciprocal frame connection
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 378–399
summary Reciprocal frames (RFs) are complex structural systems based on mutual support between elements. One of the main challenges for these structures is achieving geometrical complexity with ease for assembly. This paper describes the development of a new type of connection for RF that uses a single bolt to fix a whole fan. The method used was the Research Through Design, using algorithmic modelling and virtual and physical prototyping. After the exploration of different alternatives, the connection selected was structurally evaluated with a 3D solid finite element analysis (FEM) software and a 2D bar parametric model. Finally, a fullscale pavilion was built as a proof-of-concept. A total of 47 connections were fabricated using four 3D-printed templates combined with a hand router. The construction allowed us to draw conclusions on the connection design and the assembly method, and the process as a whole can contribute to the development of new structural links and production methods.
keywords Reciprocal frames, connections, computational design, simulations, digital fabrication
series journal
last changed 2024/04/17 14:29

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2022_42
id caadria2022_42
authors Chen, Jielin and Stouffs, Rudi
year 2022
title Robust Attributed Adjacency Graph Extraction Using Floor Plan Images
doi https://doi.org/10.52842/conf.caadria.2022.2.385
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 385-394
summary Architectural design solutions are intrinsically structured information with a broad range of interdependent scopes. Compared to conventional 2D Euclidean data such as orthographic drawings and perspectives, non-Euclidean data (e.g., attributed adjacency graphs) can be more effective and accurate for representing 3D architectural design information, which can be useful for numerous design tasks such as spatial analysis and reasoning, and practical applications such as floor plan parsing and generation. Thus, getting access to a matching attributed adjacency graph dataset of architectural design becomes a necessity. However, the task of conveniently acquiring attributed adjacency graphs from existing architectural design solutions still remains an open challenge. To this end, this project leverages state-of-the-art image segmentation techniques using an ensemble learning scheme and proposes an end-to-end framework to efficiently extract attributed adjacency graphs from floor plan images with diverse styles and varied levels of complexity, aiming at addressing generalization issues of existing approaches. The proposed graph extraction framework can be used as an innovative tool for advancing design research infrastructure, with which we construct a large-scale attributed adjacency graph dataset of architectural design using floor plan images retrieved in bulk. We have open sourced our code and dataset.
keywords attributed adjacency graph, floor plan segmentation, ensemble learning, architectural dataset, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_60
id caadria2022_60
authors Chowdhury, Shuva and Hanegraaf, Johan
year 2022
title Co-presence in Remote VR Co-design: Using Remote Virtual Collaborative Tool Arkio in Campus Design
doi https://doi.org/10.52842/conf.caadria.2022.2.465
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 465-474
summary A participatory co-design approach is most often counted as a time-consuming method and ends without any concrete solution. Since the new evolution of virtual reality-based communication tools, researchers are trying to integrate citizens in the spatial design making process in-situ situation. However, there has been little research on how remotely co-presence in VR can integrate end-users in a co-design environment in re-envisioning their own using spaces. This study adopts a remote VR collaborative platform Arkio to involve novice designers remotely to design their known urban places. Participants are in three different virtual communication systems. Groups can actively engage in co-creating 3D artefacts relevant to a virtual urban environment and communicate through audio together in a remote setting. The platform was tested with a group of graduate students. The given design task was to re-envision the urban places of their academic institute campus. The sessions have been recorded and transcribed for analysis. The analysis of remote conversations shows that co-presence existed while they were engaged in co-design.
keywords Affordable Tools, Remote Collaboration, Virtual Reality, Participatory Design, SDG 11, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_299
id caadria2022_299
authors Cui, Qiang, Zhang, Huikai, Pawar, Siddharth Suhas, Yu, Chuan, Feng, Xiqiao and Qiu, Song
year 2022
title Topology Optimization for 3D-Printable Large-Scale Metallic Hollow Structures With Self-Supporting
doi https://doi.org/10.52842/conf.caadria.2022.2.101
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 101-110
summary Design for Additive Manufacturing (DfAM), is a one of the most commonly used and foundational techniques used in the development of new products, and particularly those that involve large-scale metallic structures composed of hollow components. One such AM technique is Wire Arc Additive Manufacturing (WAAM), which is the application of robotic welding technology applied to Additive Manufacturing. Due to the lack of a simple method to describe the fabricating constraint of WAAM and the complex hollow morphology, which difficultly deploys topology optimization structural techniques that use WAAM. In this paper, we develop a design strategy that unifies ground-structure optimization method with generative design that considers the features of hollow components, WAAM overhang angle limits and manufacturing thickness limits. The method is unique in that the user can interact with the design results, make changes to parameters, and alter the design based on the user‚s aesthetic or specific manufacturing setup needs. We deploy the method in the design and 3D printing of an optimized Electric Vehicle Chassis and successfully test in under different loading conditions.
keywords Topology optimization, Generative design, Self-supporting, Hollow structures, Metallic 3D printing, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_89
id ecaade2022_89
authors Di Mascio, Danilo
year 2022
title An Untold Story of a Creative Community of Level Designers - Designing and sharing imaginary navigable virtual environments with game technologies
doi https://doi.org/10.52842/conf.ecaade.2022.1.481
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 481–490
summary The following paper describes and critically reflects on the remarkable production of a creative community of level designers who designed and published 3D game levels (3D real-time virtual navigable environments) during the end of the 1990s and the first decade of the 2000s. During those years, many level designers from several countries created an impressive number and variety of custom levels (user-created content), characterised by imaginary architectures and places informed by narrative elements. This international community was supported by various websites that are no longer available. However, an open-source website, Unreal Archive, constitutes “an initiative to preserve and maintain availability of the rich and vast history of user-created content for the Unreal and Unreal Tournament series of games” (Unreal Archive, 2022). The number of levels available on Unreal Archive exceeds 34,000. For the first time in the architectural research community, this paper aims to shed light on the creative production of that period, and to identify and critically reflect on aspects that could have cultural, creative and educational value for architecture and architectural education. The author directly experienced the achievements of that historical period, and created and published a number of virtual environments using early versions of the Unreal Editor/Engine and 3D modelling software. This research is part of a larger project that investigates transdisciplinary expressions of spaces and architectures, as well as concepts, methodologies and tools in the video games field that can inspire or be transferred to the architecture field.
keywords Virtual Environments, Imaginary Architectures and Places, Narrative, 3D Navigable Environments, Digital Heritage, User-Created Content, Unreal Editor, Unreal Series, Video Games, Level Design, Environmnetal Storytelling
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_82448 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002