CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 594

_id ecaade2022_234
id ecaade2022_234
authors Afsar, Secil, Estévez, Alberto T., Abdallah, Yomna K., Turhan, Gozde Damla, Ozel, Berfin and Doyuran, Aslihan
year 2022
title Activating Co-Creation Methodologies of 3D Printing with Biocomposites Developed from Local Organic Wastes
doi https://doi.org/10.52842/conf.ecaade.2022.1.215
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 215–224
summary Compared to the take-make-waste-oriented linear economy model, the circular model has been studied since the 1980s. Due to consumption-oriented lifestyles along with having a tendency of considering waste materials as trash, studies on sustainable materials management (SMM) have remained at a theoretical level or created temporary and limited impacts. To ensure SMM supports The European Green Deal, there is a necessity of developing top-down and bottom-up strategies simultaneously, which can be metaphorized as digging a tunnel from two different directions to meet in the middle of a mountain. In parallel with the New European Bauhaus concept, this research aims to create a case study for boosting bottom-up and data-driven methodologies to produce short-loop products made of bio-based biocomposite materials from local food & organic wastes. The Architecture departments of two universities from different countries collaborated to practice these design democratization methodologies using data transfer paths. The 3D printable models, firmware code, and detailed explanation of working with a customized 3D printer paste extruder were shared using online tools. Accordingly, the bio-based biocomposite recipe from eggshell, xanthan gum, and citric acid, which can be provided from local shops, food & organic wastes, was investigated concurrently to enhance its printability feature for generating interior design elements such as a vase or vertical gardening unit. While sharing each step from open-source platforms with adding snapshots and videos allows further development between two universities, it also makes room for other researchers/makers/designers to replicate the process/product. By combining modern manufacturing and traditional crafting methods with materials produced with DIY techniques from local resources, and using global data transfer platforms to transfer data instead of products themselves, this research seeks to unlock the value of co-creative design practices for SMM.
keywords Sustainable Materials Management, Co-Creation, Food Waste, 3D Printing, New European Bauhaus
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_68
id acadia22_68
authors Al Othman, Sulaiman; Bechthold, Martin
year 2022
title Non-Linear Fabrication
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 68-75.
summary This paper describes an improved data collection methodology in the context of clay 3D printing that integrates structured light scanning tech- nology. The ultimate goal is to use this data for toolpath calibration during the next step of the research. The integrated process measures and then addresses the deflections caused by the successive build-up of clay layers that cause changes in stiffness across the lower printed layers, distortions and shifting of clay beads caused by extrusion pressure and nozzle maneuvering, and air gaps in the clay mix that affect the material flow rate.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id acadia22_58
id acadia22_58
authors Anton, Ana; Skevaki, Eleni; Bischof, Patrick; Reiter, Lex; Dillenburger, Benjamin
year 2022
title Column-Slab Interfaces for 3D Concrete Printing
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 58-67.
summary 3D Concrete Printing (3DCP) currently dominates the scene of digital fabrication with concrete. 3DCP can be utilized on-site or in prefabrication setups. While prefabrication with 3DCP allows for more complex construction elements, it also requires the design for connections and assembly. In the context of prefabrication using 3DCP, this paper illustrates the state of research in the design, construction, and assembly of 3D printed components. It proposes segmentation and fabrication strategies to produce horizontal and vertical structural members of a column-slab building system following the typology of mushroom slabs.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id sigradi2022_243
id sigradi2022_243
authors Banda, Pablo; Carrasco-Pérez, Patricio; García-Alvarado, Rodrigo; Munoz-Sanguinetti, Claudia
year 2022
title Planning & Design Platform of Buildings By Robotic Additive Manufacturing for Construction.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 421–430
summary The following paper describes and comments a construction planning platform for the Additive Manufacturing of wall modules, as a set of design and planning actions that interwove robotic, material capacities and spatial characteristics. Goal here is to take semi-conventional strategy and augment the algorithmic process for design and knowledge acquisition regarding design oriented to 3D Printing Construction.
keywords Additive Manufacturing for Construction, 3D Printing, Digital Fabrication, Parametric Design
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_357
id caadria2022_357
authors Bedarf, Patrick, Szabo, Anna, Zanini, Michele, Heusi, Alex and Dillenburger, Benjamin
year 2022
title Robotic 3D Printing of Mineral Foam for a Lightweight Composite Concrete Slab
doi https://doi.org/10.52842/conf.caadria.2022.2.061
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 61-70
summary This paper presents the design and fabrication of a lightweight composite concrete slab prototype using 3D printing (3DP) of mineral foams. Conventionally, concrete slabs are standardized monolithic elements that are responsible for a large share of used materials and dead weight in concrete framed buildings. Optimized slab designs require less material at the expense of increasing the formwork complexity, required labour, and costs. To address these challenges, foam 3D printing (F3DP) can be used in construction as demonstrated in previous studies for lightweight facade elements. The work in this paper expands this research and uses F3DP to fabricate the freeform stay-in-place formwork components for a material-efficient lightweight ribbed concrete slab with a footprint of 2 x 1.3 m. For this advancement in scale, the robotic fabrication and material processing setup is refined and computational design strategies for the generation of advanced toolpaths developed. The presented composite of hardened mineral foam and fibre-reinforced ultra-high-performance concrete shows how custom geometries can be efficiently fabricated for geometrically complex formwork. The prototype demonstrates that optimized slabs could save up to 72% of total concrete volume and 70% weight. The discussion of results and challenges in this study provides a valuable outlook on the viability of this novel fabrication technique to foster a sustainable and resourceful future construction culture.
keywords robotic 3d-printing, mineral foam, stay-in-place formwork, concrete composite, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_312
id ecaade2022_312
authors Bhagat, Puja and Gursoy, Benay
year 2022
title Stretch – 3D Print – Release: Formal descriptions of shape-change in 3D printed shapes on stretched fabrics
doi https://doi.org/10.52842/conf.ecaade.2022.1.301
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 301–310
summary Researchers have previously explored 3D printing 2D shapes on stretched fabrics using plastic filaments. When released, the 3D printed plastic constrains the fabric to take a 3D form. By leveraging the material properties and resultant tension between the rigid plastic and pliable fabric, it is possible to create 3D forms which would otherwise be difficult to construct with traditional fabrication techniques. Multiple factors are in play in this shape-change. Therefore, it is often difficult to anticipate the 3D form that will emerge when the stretched fabric is released. In this paper, we present our systematic bottom-up explorations on the effects of various parameters on shape-change and formalize our findings as rules. These rules help to visualize the interrelations between (abstract) shapes designed for 3D printing, (material) shapes 3D printed on stretched fabric, and (material) shapes that emerge when the fabric is released. The rules also help to explore design possibilities with this technique in a more controlled, communicable, and repeatable way. We also present a series of vaulted forms that we generated using these rules and by stretching - 3D printing - releasing the fabric.
keywords Material Computing, Shape-change, Adaptive Architecture, Digital Fabrication, 3D Printing on Textiles
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2022_299
id caadria2022_299
authors Cui, Qiang, Zhang, Huikai, Pawar, Siddharth Suhas, Yu, Chuan, Feng, Xiqiao and Qiu, Song
year 2022
title Topology Optimization for 3D-Printable Large-Scale Metallic Hollow Structures With Self-Supporting
doi https://doi.org/10.52842/conf.caadria.2022.2.101
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 101-110
summary Design for Additive Manufacturing (DfAM), is a one of the most commonly used and foundational techniques used in the development of new products, and particularly those that involve large-scale metallic structures composed of hollow components. One such AM technique is Wire Arc Additive Manufacturing (WAAM), which is the application of robotic welding technology applied to Additive Manufacturing. Due to the lack of a simple method to describe the fabricating constraint of WAAM and the complex hollow morphology, which difficultly deploys topology optimization structural techniques that use WAAM. In this paper, we develop a design strategy that unifies ground-structure optimization method with generative design that considers the features of hollow components, WAAM overhang angle limits and manufacturing thickness limits. The method is unique in that the user can interact with the design results, make changes to parameters, and alter the design based on the user‚s aesthetic or specific manufacturing setup needs. We deploy the method in the design and 3D printing of an optimized Electric Vehicle Chassis and successfully test in under different loading conditions.
keywords Topology optimization, Generative design, Self-supporting, Hollow structures, Metallic 3D printing, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_55
id caadria2022_55
authors Dritsas, Stylianos, Hoo, Jian Li and Fernandez, Javier
year 2022
title Sustainable Rapid Prototyping with Fungus-Like Adhesive Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.263
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 263-272
summary The purpose of the research work presented in this paper is to develop a sustainable rapid prototyping technology. Fused filament fabrication using synthetic polymers is today the most popular method of rapid prototyping. This has environmental repercussions because the short-lived artifacts produced using rapid prototyping contribute to the problem of plastic waste. Natural biological materials, namely Fungus-Like Adhesive Materials (FLAM) investigated here, offer a sustainable alternative. FLAM are cellulose and chitin composites with renewable sourcing and naturally biodegradable characteristics. The 3D printing process developed for FLAM in the past, targeted large-scale additive manufacturing applications. Here we assess the feasibility of increasing its resolution such that it can be used for rapid prototyping. Challenges and solutions related to material, mechanical and environmental control parameters are presented as well as experimental prototypes aimed at evaluating the proposed process characteristics.
keywords Rapid Prototyping, Sustainable Manufacturing, Digital Fabrication, Robotic Fabrication, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_432
id cdrf2022_432
authors Felix Raspall and Carlos Banón
year 2022
title Large-Scale 3D Printing Using Recycled PET. The Case of Upcycle Lab @ DB Schenker Singapore
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_37
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Large-scale additive manufacturing for architectural applications is a growing research field. In the recent years, several real-scale projects demonstrated a preliminary viability of this technology for practical applications in architecture. Concurrently, the use of recycled polymers in 3d printing has progressed as a more sustainable feed for small-scale applications. However, there are limited empirical examples on the use of additive manufacturing using recycled polymers in large-scale and real-life architectural applications. This project develops two design and fabrication approaches to large-scale manufacturing using recycled Polyethylene Terephthalate (PET) from single-use bottles into large design elements and tests them in a real-life project. The two designs are discussed in detail: a 4 m diameter dome-like chandelier printed with a robotic extruder using recycled PET pellets, and a 3.5 m diameter chandelier using a Fused Deposition Modeling (FDM) printing farm. The paper covers the state of the art of related printing technologies and their gaps, describes the printing process developed in this research, details the design of the domes, and discusses the empirical evidence on the benefits and drawbacks of large-scale additive manufacturing using recycled polymers. Overall, the research demonstrates the possibilities of large-scale additive manufacturing using recycled polymers, adding findings form a real-life project to the growing body of research on additive manufacturing in architecture.
series cdrf
email
last changed 2024/05/29 14:03

_id sigradi2022_66
id sigradi2022_66
authors Garcia-Alvarado, Rodrigo; Banda Perez, Pablo; Moroni Orellana, Ginnia
year 2022
title Architectural Diversity of Residential Buildings through Digital Design and Robotic Construction
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 957–966
summary The housing demand in Latin America has promoted to build big complexes with repetitive designs to ensure their execution and commercialization, but neglecting the differences in occupation, cultures, ages, abilities, genders, climates and locations. Producing low quality, environmental deterioration and social alienation. This work exposes a parametric programming and robotic construction strategy to develop a varied residential process. Based on structural volumes and 3d-printed walls, to provide a diversity of housing configurations. The modular generation of volumes and development of the envelope is programmed to meet various thermal and occupational conditions, with printing trajectories for the walls according to the equipment, execution processes and material capacities. A repertoire of 494 residential volumes has been defined and prototype walls have been made, suggesting an innovative design system, wich provides a new paradigm for housing construction with digital technologies and robotic execution to diversify residential quality.
keywords Inclusive Design, Housing, Parametric Design, Robotics, Digital Fabrication
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_476
id caadria2022_476
authors Gong, Lei, Zhou, Yifan, Zheng, Lang and Yuan, Philip F.
year 2022
title Extrusion-Based 3d Printing for Recyclable Gypsum
doi https://doi.org/10.52842/conf.caadria.2022.2.273
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 273-282
summary Gypsum is one of the most commonly used construction materials in cladding and non-load-bearing decoration. Recently, 3D printing technology has been involved in creating complex geometry. The particle-based method is the principal approach in 3D gypsum printing. However, the complex device and limited printable range limit the massive production of large-scale building components. This paper proposed a novel extrusion-based gypsum printing method and corresponding robotic fabrication workflow. First, several experiments are conducted to analyze the effect of different admixtures (retarder, activation agent, and accelerator) on the material setting properties. Second, a set-on-demand gypsum-based material is proposed by actively controlling multiple admixtures. Then, a process parameter-based robotic fabrication workflow is proposed, and a set of extrusion- based 3D gypsum printing equipment is built. center864108000A curved gypsum panel sample is printed as experimental verification. By comparing to the particle-based method, The test sample shows that the extrusion-based method can effectively improve the production efficiency and reduce the production cost. Therefore, the proposed method gives a relatively efficient and cost-effective way to produce recyclable gypsum material massively.
keywords 3D Gypsum Printing, Extrusion-based, Set-on-Demand Material, Material Modification, Robotic Fabrication Workflow, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_247
id ecaade2022_247
authors Güntepe, Rahma
year 2022
title Building with Expanded Cork - A novel monolithic building structure
doi https://doi.org/10.52842/conf.ecaade.2022.1.029
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 29–36
summary This research presents the development of a construction system for a solid expanded cork building envelope. The inspiration for this research is the “Cork House” built in 2019 by Matthew Barnett Howland and Oliver Wilton, who developed a Cork Construction Kit for a monolithic dry-jointed cork structure. The goal of this research is to analyze and develop different varieties of construction methods for a dry-joined cork building by combining and applying traditional masonry techniques. The objective is to generate a material-based design for cork construction elements trough prototyping and using a selection of digital tools such as 3D modeling and 3D printing. Expanded cork is a 100% plant-based material which, if applied correctly, has the capacity to be used as a load bearing, insulating and protective structure all at once. It has almost no environmental impact and is completely compostable. To maintain the material's compostable property, this construction system has to be developed without any kind of binders or mortar. Additionally, this more reduced and simplified form of construction will not only make it possible to build without any specific expertise, but at the same time ensure resources to be reused or composted at the end of building life.
keywords Expanded Cork, Cork, Material-Based Design, Masonry, Stereotomy, 3D Modeling, 3D Printing, Sustainable Material, Dry-Joint Construction
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220103
id ijac202220103
authors Jauk, Julian; Lukas Gosch, Hana Vašatko, Ingolf Christian, Anita Klaus, Milena Stavric
year 2022
title MyCera. Application of mycelial growth within digitally manufactured clay structures
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 31–40
summary In this paper we will demonstrate a digital workflow that includes a living material such as mycelium and makes the creation of structural designs possible. Our interdisciplinary research combines digital manufacturing with the use of mycelial growth, which enables fibre connections on a microscopic scale. We developed a structure that uses material informed toolpaths for paste-based extrusion, which are built on the foundation of experiments that compare material properties and growth observations. Subsequently, the tensile strength of 3D printed unfired clay elements was increased by using mycelium as an intelligently oriented fibre reinforcement. Assembling clay-mycelium composites in a living state allows force-transmitting connections within the structure. This composite has exhibited structural properties that open up the possibility of its implementation in the building industry. It allows the design and efficient manufacturing of lightweight ceramic constructions customised to this composite, which would not have been possible using conventional ce- ramics fabrication methods.
keywords Clay, Mycelium, 3D Printing, Growth, Bio-welding
series journal
last changed 2024/04/17 14:29

_id cdrf2022_514
id cdrf2022_514
authors Jiaxiang Luo, Tianyi Gao, and Philip F. Yuan
year 2022
title Fabrication of Reinforced 3D Concrete Printing Formwork
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_44
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary In recent years, the emerging 3D printing concrete technology has been proved to be an effective and intelligent strategy compared with conventional casting concrete construction. Due to the principle of additive manufacturing strategy, this concrete extrusion technique creates great opportunities for designing freeform geometries for surface decoration since this material has a promising performance of high compressive strength, low deformation, and excellent durability. However, the structure behavior is usually questioned, defined by the thickness and printing path. At the same time, the experiments for using 3D printing elements for structural and functional parts are still insufficient. Little investigation has been made into developing reinforcement strategies compatible with 3D printing concrete. In fact, conventional formwork and easy-to-install reinforcement support structures have various advantages in terms of labor costs but can hardly be reused. Thus, using 3D concrete printing as formwork for projects in different scales is an effective solution in the mass customized prefabrication era. Considering large-scale projects, the demand to provide concrete formwork with a proper reinforcement strategy for better toughness, flexibility, and strength is necessary. In this paper, we proposed different off-site reinforced 3D printing concrete strategies and evaluated them from time and material cost, deviation, and accessibility of fabrication.
series cdrf
email
last changed 2024/05/29 14:03

_id acadia22pr_148
id acadia22pr_148
authors Jung,, Francisco; Al Othman, Sulaiman; Im, Hyeonji Claire; García del Castillo y López, Jose Luis; Bechthold, Martin
year 2022
title Responsive Spatial Print Trajectory: 3D Printing of Clay Lattices with Self-Corrective Recalibration
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 148-153.
summary This project presents a novel method of spatially printing clay lattices by controlling fabrication parameters such as the printing head speed and the material extrusion rate following a 3D-choreographed toolpath. Spatial printing refers to the unrestricted movement of the printer nozzle in three axes (x, y, z) when extruding material, as opposed to the conventional 2-axis layer-by-layer deposition that is very slow and results in increased operational costs. This method—enhanced with an integrated industrial laser displacement sensor to collect deflection data subsequently used to calibrate the next layer toolpath geometry in real- time—works optimally with carbon-fiber reinforcements for increased tensile performance.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id ecaade2022_38
id ecaade2022_38
authors Klemmt, Christoph, Aghaei Meibodi, Mania, Beaucage, Gregory and Mcgee, Wes
year 2022
title Large-scale Robotic 3D Printing of Plant Fibre and Bioplastic Composites
doi https://doi.org/10.52842/conf.ecaade.2022.1.009
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 9–18
summary This paper presents a methodology for the robotic 3D printing of cellulose and wood shavings with bioplastics for applications in architecture, moulds, or furniture design. The material composition consists of plant fibre, binders, solvents and additives. All of the ingredients are either biodegradable or biocompatible, as in, they naturally occur in the environment. Different material compositions have been explored and tested for their extrusion behaviour, drying and curing behaviour, buildability and final product qualities, resulting in the manufacture of several case-study prototypes as a proof of concept.
keywords 3D Printing, Wood, Cellulose, Bioplastic, Robot, Growth Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_76
id acadia22_76
authors Kwon, Hyunchul; Soni, Priyank; Saeedi, Ali; Shahverdi, Moslem; Dillenburger, Benjamin
year 2022
title 3D Printing and Shape Memory Alloys
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 76-89.
summary This paper presents a novel method combining the use of 3D printing (3DP) and shape memory alloys (SMAs) to compose kinetic architectural elements that are energy- and material-efficient within compact-integrated composites. Kinetic systems for architectural use have been explored since the late twentieth century using motor mechanics. However, the primary challenges of this method include maintenance of mechanical units, their high energy demand, and noise during actuation. To address these shortcomings, this research explores a hybrid of 3DP motion-optimized parts with embedded SMAs as a muscle that changes shape with temperature stimulus
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id acadia22pr_100
id acadia22pr_100
authors Lee, Yong Ju
year 2022
title Versatile Bracketry - Contemporary Fabrication Techniques for Traditional Korean Architecture
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 100-105.
summary Versatile Bracketry is an architectural experiment employing algorithmic design technology and 3D printing, manipulating Gong-po—a wooden bracket element found in traditional Korean architecture. Although there has been some recognition and reflection toward the inclusion of traditional forms in modern design, the mainstream in Korean architecture has been Western-oriented. However, advanced computation technology provides both a new perspective and approach in this field, and higher productivity and efficiency.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id ecaade2022_167
id ecaade2022_167
authors Lin, Han, Tsai, Tsung-Han, Chen, Ting-Chia, Sheng, Yu-Ting and Wang, Shih-Yuan
year 2022
title Robotic Additive Manufacturing of Glass Structures
doi https://doi.org/10.52842/conf.ecaade.2022.2.379
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 379–388
summary This paper proposes a glass 3D printing system that can be used at room temperature. The system employs high-frequency electromagnetic induction heaters and stone-ground carbon tubes to heat glass raw materials. In this study, a digital control system was fully utilised to control the extrusion of borosilicate glass materials. Through a calculated design and communication between a six-axis robot arm and an external computer, the robot’s printing path and speed and the feeding state of the glass printing machine can be automatically controlled for different geometric shapes and velocities. This study examines digital manufacturing processes and material properties to investigate the novel glass printing of textures and free-form surface modelling.
keywords Glass, Induction Heating, Rapid Prototype, 3D Printing, Robotic Fabrication
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_304296 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002