CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id ijac202220212
id ijac202220212
authors Castriotto, Caio; Felipe Tavares; Gabriela Celani; Olga Popovic Larsen; Xan Browne
year 2022
title Clamp links: A novel type of reciprocal frame connection
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 378–399
summary Reciprocal frames (RFs) are complex structural systems based on mutual support between elements. One of the main challenges for these structures is achieving geometrical complexity with ease for assembly. This paper describes the development of a new type of connection for RF that uses a single bolt to fix a whole fan. The method used was the Research Through Design, using algorithmic modelling and virtual and physical prototyping. After the exploration of different alternatives, the connection selected was structurally evaluated with a 3D solid finite element analysis (FEM) software and a 2D bar parametric model. Finally, a fullscale pavilion was built as a proof-of-concept. A total of 47 connections were fabricated using four 3D-printed templates combined with a hand router. The construction allowed us to draw conclusions on the connection design and the assembly method, and the process as a whole can contribute to the development of new structural links and production methods.
keywords Reciprocal frames, connections, computational design, simulations, digital fabrication
series journal
last changed 2024/04/17 14:29

_id cdrf2022_499
id cdrf2022_499
authors Yuxuan Wang, Yuran Liu, Riley Studebaker, Billie Faircloth, and Robert Stuart-Smith
year 2022
title Ceramic Incremental Forming–A Rapid Mold-Less Forming Method of Variable Surfaces
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_43
summary Following architectural practice’s widespread adoption of 3D modelling software, the digital design of free-form surfaces has enabled more heterogeneously organized architectural assemblies. However, fabricating envelope components with double-curved surface geometry have remained a challenge, involving significant machine time and material waste, and great expense to produce. This proof-of-concept project proposes a rapid, low-cost, and minimal-waste approach to forming double curved ceramic components through a novel approach to Ceramic Incremental Forming (CIF), using a 6-axis industrial robot, a passive flexible mold, and a custom ball-rolling tool. The approach is comparable to Single Point Incremental Forming (SPIF) that is used for forming complex shapes with metal sheets. This method promises to achieve high-quality, ceramic building envelope components, while eliminating the need to build proprietary molds for each shape and reducing the waste in the forming process. Compared with other architectural mold-less forming methods such as clay 3D printing, the approach is more time and material efficient, while being able to achieve similar levels of complexity. Thus, CIF may offer potential for further development and industrial applications.
series cdrf
email
last changed 2024/05/29 14:03

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_60
id ecaade2022_60
authors Carl, Timo and Weilandt, Agnes
year 2022
title From Sheet to Folded Plate Structure - Design & build investigations with an interdisciplinary student team
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 517–524
doi https://doi.org/10.52842/conf.ecaade.2022.2.517
summary This paper outlines a teaching methodology that utilizes folding as a form-generator and introduces an interdisciplinary student team to digital tools and research-through-design based methods. At the heart of the project is the design of folded plate structures, which can be manufactured from 10mm cardboard material by using only 2D-CNC miter cutting. We present our computational workflow from conception to completion for two 1:1 scale demonstrators. Lastly, we identify aspects of the project that can be applied for other computational design teaching formats.
keywords Design-Build, Parametric Modelling, Form-Finding, Structural Simulation, Interdisciplinary Collaboration, Digital Fabrication, Folded Plate Structures
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_170
id ecaade2022_170
authors Colonneau, Téva, Chenafi, Sabrina and Mastrorilli, Antonella
year 2022
title Digital Intervention Methodologies and Robotic Manufacturing for the Conservation and the Restoration of 20th-Century Concrete Architecture Damaged by Material Loss
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 197–206
doi https://doi.org/10.52842/conf.ecaade.2022.2.197
summary This article deals with the characterisation of robotic manufacturing systems and digital interventions adapted for the conservation and the restoration of 20th-century concrete buildings. By exploiting the potential for analysis and implementation of robotic manufacturing technologies used in the field of heritage science, two associated non- invasive, non-destructive and integrated intervention solutions are presented here, using two research approaches. Through the use of digital recording tools, digital modelling / simulation and additive manufacturing techniques, the first approach develops a direct repair process by adding material with the help of aerial robots. The second focuses on printing recyclable plastic mouldings in order to reproduce partially degraded or completely destroyed architectural details. The results of these two diverse and complementary researches, as well as their experimental approaches applied to conservation and restoration practices, aim to test the proposed robotic manufacturing- based method, regarding the criteria of transferability and methodological feasibility.
keywords 20th-Century Concrete Built Heritage, Conservation and Restoration Practices, Digital Modelling, Robotic Manufacturing, Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_396
id ecaade2022_396
authors Hamzaoglu, Begüm, Özkar, Mine and Aydin, Serdar
year 2022
title Towards a Digital Practice of Historical Stone Carvings
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 227–234
doi https://doi.org/10.52842/conf.ecaade.2022.2.227
summary Local traditional crafts in various parts of the world are being transformed by digitalization in tandem with broader social and economic changes. Mardin, a historical and cultural hub in southeast Anatolia, presents an exemplary case with its stone architecture. Whereas the number of skilled craftsmen is diminishing, digital fabrication ateliers are increasingly in demand in the city and rising in number. Training programs have already started integrating CNC milling-based techniques. However, despite the growing interest in adapting computational processes, how the craft knowledge is documented and conveyed to multiple actors for maintaining and even increasing the quality of workmanship is yet to be explored. We present a novel way to document carving procedures and to create an inventory of the 3D motifs using cross-sections as complements to front views. The research engages end-user participants of different backgrounds, such as stone cutting technologies and architecture, with little or no practical knowledge of digital manufacturing. The work focuses on a selection of motifs from the Syriac stone carving heritage in Mardin, the documentation of which is very limited. The proposed workflow begins with recording the surface depth and the variations in the cross-section using digital scans. In the second stage, we consider the potential subtractive transformations that result in the final form and reconstruct them as milling operations with a parametric and procedural modeling approach. Various milling processes are derived by relating the shapes to the available cutting tools and materials. The study contributes to creating the inventory of an engraving culture that has lasted for hundreds of years while developing a generally applicable and transferable knowledge base to increase its sharing and dissemination in the age of digitally supported production.
keywords Cultural Heritage, Digital Fabrication, Craft Knowledge, Digital Craft, Analog-Digital
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_183
id caadria2022_183
authors Helmreich, Matthias, Mayer, Hannes, Pacher, Matteo, Nakajima, Tadahiro, Kuroki, Mitsuhiro, Tsubata, Shinya, Gramazio, Fabio and Kohler, Matthias
year 2022
title Robotic Assembly of Modular Multi-Storey Timber-Only Frame Structures Using Traditional Wood Joinery
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 111-120
doi https://doi.org/10.52842/conf.caadria.2022.2.111
summary This paper presents a novel approach to computationally designed and robotically assembled modular timber-only structures with traditional wood joinery methods. We geometrically adapt and parametrize five traditional joint typologies to compensate for robotic placement inaccuracies and comply with modern structural requirements. The force-locking capacity of the connections is utilised to support the robotic assembly of five unique timber frame modules of 5.5 by 2.2 by 2.5 metres, each with a unique timber lattice pattern. For each major joint typology we conduct a series of structural load-tests to evaluate the structural performance. We develop a custom software to enable architects and engineers to interactively design with those principles, taking into account both structural and production feasibility constraints. As a demonstration of our design approach, the five modules were robotically assembled using the described methods.
keywords Robotic Assembly, Wood Joints, Spatial Timber Structures, Timber-only, SDG 9, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_126
id ecaade2022_126
authors Janssen, Patrick and Bui, Tung Do Phuong
year 2022
title VR Panoramas - Visualizing urban context using 360 spherical images
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 475–484
doi https://doi.org/10.52842/conf.ecaade.2022.2.475
summary VR photography is the interactive viewing of panoramic photographs using a 360° spherical view. This paper focuses on the use of VR photographs of the urban environment to improve spatial understanding. These photographs can be embedded into a modelling environment as a set of VR panorama hotspots. When users navigate to one of these hotspots, they are able to see how their proposed building or structure relates to the visually detailed view of the urban context. The proposed approach has been implemented in a parametric modelling application called Möbius Modeller. To demonstrate the power of immersive VR, a series of example models are presented that include VR panorama hotspots.
keywords Virtual Reality, Urban Modelling, Urban Context, 360 Spherical Images
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_51
id ecaade2022_51
authors Lüling, Claudia and Carl, Timo
year 2022
title Fuzzy 3D Fabrics & Precise 3D Printing - Combining research with design-build investigations
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 67–76
doi https://doi.org/10.52842/conf.ecaade.2022.1.067
summary We present a synergetic combination of two previously separate process technologies to create novel lightweight structures. 3D textiles and 3D printing. We will outline the development of a novel material system that consisted of flexible and foldable 3D textiles that are combined with stiff, linear 3D printed materials. Our aim is to produce material-reduced lightweight elements for building applications with an extended functionality and recyclability. Within an ongoing research project (6dTEX), we explore a mono-material system, which uses the same base materials for both the filament for 3D printing and the yarn of the fabrication of the 3D textiles. Based on preliminary 3D printing tests on flat textiles key process parameters were identified. Expertise has been established for 3D printing on textiles as well as for using printable recycled polyester materials (PES textile and PETG filament. Lastly for 3D printing on non-combustible material (alkali-resistant (AR) glass textiles and for 3D concrete printing (3DCP). The described process- knowledge facilitates textile architectures with an extended vocabulary, ranging from flat to single curved and folded topologies. Whereas the foundations are laid in the research project on a meso scale, we also extended our explorations into an architectural macro scale. For this, we used a more speculative design-build studio that was based on a more loose combination of 3D textiles and 3D printed elements. Lastly, we will discuss, how this first architectural application beneficially informed the research project.
keywords Material-Based Design, Additive Manufacturing, Design-Build, Parametric Modelling, Form-Finding, Co-Creation, Lightweight Structures, Single-Origin Composites, Space Fabrics
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220213
id ijac202220213
authors Morales-Beltran, Mauricio; Berk Selamoglu; Kaan Çetin; Halis Arda Özdemir; Fulya Özbey
year 2022
title Exploring 3D printing techniques for the hybrid fabrication of discrete topology optimized structures
source International Journal of Architectural Computing 2022, Vol. 20 - no. 2, pp. 400–419
summary The application of topology optimization methods in architecture, while useful for conceptual design explorations, seems to be limited by the practical realization of continuum-type design outcomes. One way to overcome this limitation is setting up design and fabrication techniques, through which continuum domains become discrete structures. This study investigates to which extent discrete optimized systems can be built using a hybrid approach combining 3D printing and analogue fabrication techniques. The procedure is based on an algorithm in Grasshopper (Rhinoceros) that translates continuum topologies obtained in MATLAB into discrete systems, providing alternatives depending on the targeted volume fraction, the intended surface smoothness of the structural components and building material. The study focuses on fabrication aspects and structural performance of discrete structures using 3D printed nodes. Experimental tests evaluate the compressive strength of different types of filaments with varied infill percentages. Final prototypes are fabricated using a hybrid technique involving the use of 3D printed nodes to assemble bar-arrays comprising wooden members. Results provide a critical appraisal of the limitations and potentialities of 3D printing for hybrid fabrication of real scale structures
keywords Topology optimization, discrete structures, material hybridity, digital fabrication, conceptual design, PLA, PETG
series journal
last changed 2024/04/17 14:29

_id ijac202220406
id ijac202220406
authors Pibal, Sophia S.; Konstantin Khoss; Iva Kovacic
year 2022
title Framework of an algorithm-aided BIM approach for modular residential building information models
source International Journal of Architectural Computing 2022, Vol. 20 - no. 4, pp. 777–800
summary The digital transformation of the construction industry and the lack of integration of digital technologies in design and construction processes are the motivation for this research. BIM solutions enable new levels of design processes and provide platforms for computational design and novel approaches in the AEC industry. In computational design parametric, generative or algorithmic procedures are utilized to support, optimize, or replace manual processes. The combination of BIM and generative, parametric or algorithmic design forms a hybrid that aims to combine the advantages of both concepts and allows for generative design processes with the creation of BIM objects containing metadata. Along with the digital transformation and novel approaches in the AEC industry, modular construction aims to shift from mass production to mass customization and maximize opportunities for cost-effective, economical, and sustainable buildings. This paper addresses the approach of generating building information models using algorithm-aided design combined with BIM at an early design stage for modular multi-story residential buildings that are affordable and sustainable. In this study, we present the framework of an algorithm-aided BIM approach, from the concept of the generative algorithm to the evaluation approach and the proof of concept as the test of the framework
keywords Building information modeling, algorithm-aided design, algorithm-aided building information modeling, modular construction, mass customization
series journal
last changed 2024/04/17 14:30

_id caadria2022_69
id caadria2022_69
authors Rogeau, Nicolas, Rezaei Rad, Aryan, Vestartas, Petras, Latteur, Pierre and Weinand, Yves
year 2022
title A Collaborative Workflow to Automate the Design, Analysis, and Construction of Integrally-Attached Timber Plate Structures
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
doi https://doi.org/10.52842/conf.caadria.2022.2.151
summary This paper introduces a computational framework that fosters collaboration between architects, engineers, and contractors by bridging the gap between architectural design, structural analysis, and digital construction. The present research is oriented toward the formulation of an automatic design-to-construction pipeline for Integrally-Attached Timber Plate Structures (IATPS). This construction system is based on assembling timber panels through the sole interlocking of wood-wood connections inspired by traditional Japanese joinery. Prior research focused on developing distinct computational workflows and dealt with the automation of 3D modelling, numerical simulation, fabrication, and assembly separately. In the current study, a single and interactive design tool is presented. Its versatility is demonstrated through two case studies, as well as the assembly of a physical prototype with a robotic arm. Results indicate that efficiency in terms of data flow and stakeholder synergy is considerably increased. The proposed approach contributes to the†Sustainable Development Goal (SDG) 11 by facilitating the collaborative design of sustainable timber structures. Besides, the research also contributes to SDG 9 as it paves the way for sustainable industrialisation of the timber construction sector through streamlined digital fabrication and robotic assembly processes. This reduces manufacturing time and associated costs while leveraging richer design possibilities.
keywords Timber plate structures, Timber joints, Collaborative design, Interdisciplinary design, Structural performance assessment, Robotic assembly, SDG 11, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_53
id sigradi2022_53
authors Stuart-Smith, Robert; Danahy, Patrick
year 2022
title 3D Generative Design for Non-Experts: Multiview Perceptual Similarity with Agent-Based Reinforcement Learning
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 115–126
summary Advances in additive manufacturing allow architectural elements to be fabricated with increasingly complex geometrical designs, however, corresponding 3D design software requires substantial knowledge and skill to operate, limiting adoption by non-experts or people with disabilities. Established non-expert approaches typically constrain geometry, topology, or character to a pre-established configuration, rather than aligning to figural and aesthetic characteristics defined by a user. A methodology is proposed that enables a user to develop multi-manifold designs from sketches or images in several 3d camera projections. An agent-based design approach responds to computer vision analysis (CVA) and Deep Reinforcement Learning (RL) to design outcomes with perceptual similarity to user input images evaluated by Structural Similarity Indexing (SSIM). Several CVA and RL ratios were explored in training models and tested on untrained images to evaluate their effectiveness. Results demonstrate a combination of CVA and RL motion behavior can produce meshes with perceptual similarity to image content.
keywords Generative Design, Machine Learning, Agent-Based Systems, Non-Expert Design
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_411
id caadria2022_411
authors Yang, Xuyou, Bao, Ding Wen, Yan, Xin and Zhao, Yucheng
year 2022
title OptiGAN: Topological Optimization in Design Form-Finding With Conditional GANs
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 121-130
doi https://doi.org/10.52842/conf.caadria.2022.1.121
summary With the rapid development of computers and technology in the 20th century, the topological optimisation (TO) method has spread worldwide in various fields. This novel structural optimisation approach has been applied in many disciplines, including architectural form-finding. Especially Bi-directional Evolutionary Structural Optimisation (BESO), which was proposed in the 1990s, is widely used by thousands of engineers and architects worldwide to design innovative and iconic buildings. To integrate topological optimisation with artificial intelligence (AI) algorithms and to leverage its power to improve the diversity and efficiency of the BESO topological optimisation method, this research explores a non-iterative approach to accelerate the topology optimisation process of structures in architectural form-finding via conditional generative adversarial networks (GANs), which is named as OptiGAN. Trained with topological optimisation results generated through Ameba software, OptiGAN is able to predict a wide range of optimised architectural and structural designs under defined conditions.
keywords BESO (bi-directional evolutionary structural optimisation), Artificial Intelligence, Deep Learning, Topological Optimisation, Form-Finding, GAN (Generative Adversarial Networks), SDG 12, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_273
id ecaade2022_273
authors Zhuang, Xinwei
year 2022
title Rendering Sketches - Interactive rendering generation from sketches using conditional generative adversarial neural network
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 517–524
doi https://doi.org/10.52842/conf.ecaade.2022.1.517
summary Architects use sketches in the early design phase to organize and elaborate their initial ideas, and those initial sketches often support ideation for the final design. However, the sketches in the early design phase tend to be abstract and hard to interpret. Minimal prior works provide tools for quick visualization of the initial sketch. This study provides a scheme for architects and designers to generate preliminary renderings in the early design stage. In this study, we use conditional generative adversarial networks (cGAN) as the frame and introduces an updater network to the existing cGAN to support the iterative design process. A sketch serves as input to see the rendering and update the sketch based on the generated renderings by adding more resolution and details. The network is able to generate a reasonable rendering from the single-image network, and is able to update the renderings iteratively via the updater network. The dataset is collected from residential buildings exclusively, but the architectural categories can be expanded to other types of buildings in the future. Results show that the proposed scheme is able to provide reasonable renderings from sketches, and the generated rendering can be updated with a higher level of details within a second if the user provides a more detailed sketch. The contribution of this study includes introducing an updater network to the existing algorithm to enable iterative input and provides an alternative enhancement approach to the resolution of the generated image.
keywords Computer Aided Design, Early Design Phase, Conditional Generative Adversarial Neural Network, Human Computer Interaction
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_150
id acadia22_150
authors Zilka, Leanne; Underwood, Jenny
year 2022
title From Garment to Building
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 150-155.
summary The research shown here revolves around an installation at the National Gallery of Victoria, Melbourne, Australia. It illustrates a novel approach to the design of building elements by combining the expertise embedded in the disciplines of architecture and textile design into a hybrid practice. We found that by using textile technologies to ‘build’ architectural elements we can rethink waste in construction, expand the materials available for use in architecture, as well as minimize time involved in the post-fabrication of complex forms. This paper describes an installation that demonstrates a direct translation between architectural form and whole garment knitting machines without the need for prototyping. 
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_168
id ecaade2022_168
authors Abdulmawla, Abdulmalik, Schneider, Sven, Koenig, Reinhard, Bielik, Martin and Fuchkina, Ekaterina
year 2022
title Parametric Urban Data Structuring and Spatial Query - Advanced data mapping and selection methods for parametric modelling environments
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 277–286
doi https://doi.org/10.52842/conf.ecaade.2022.2.277
summary This paper presents a method for organising urban data inside the CAD environment into a hierarchical structure, which promotes the ease of transferring information between all available urban elements, from streets to buildings passing by the plots and blocks. This is done using parametric methods that map the urban data using the available CAD and GIS records. Finally, the paper presents a couple of example scenarios where such methods are most needed and how much they could facilitate more detailed and complex data to be accessed, compared, and analysed.
keywords Urban Query, Urban Geometry, Spatial Mapping
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_013
id ascaad2022_013
authors Al-Suwaidi, Mohammed; Agkathidis, Asterios; Haidar, Adonis; Lombardi, Davide
year 2022
title Application of Immersive Technologies in the Early Design Stage in Architecture Education: A Systematic Review
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 313-330
summary This paper reviews existing research on the use of immersive technologies, Virtual Reality in particular, in various stages of the architectural design process. Nine research papers were systematically reviewed and analyzed. They were filtered down by using the keywords: ‘Virtual/Augmented Reality, Architectural Education, Gravity Sketch, Unity and Virtual Environments’ from two main databases that focus on digital and computer-aided design research: Cumulative Index about publications in Computer Aided Architectural Design (CuminCAD) and Elsevier's abstract and citation database (Scopus). The selection of papers was filtered down based on relevant approaches which investigate architectural design, creative thinking and teaching methodology using immersive technologies. Another criterion applied to the filtering process of the research papers is the exploration and integration process of new tools and overlapping external software to aid the existing workflow of the user. Our findings explore the evolution of immersive tools to highlight the advantages and disadvantages of virtual reality-based software and hardware, as a creative development tool in the field of education and practice. This paper also proposes a novel teaching methodology that incorporates immersive technologies in the early design phase of architectural education.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_205
id caadria2022_205
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title Quantifying the Intangible, A Tool for Retrospective Protocol Studies of Sketching During the Early Conceptual Design of Architecture
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 403-411
doi https://doi.org/10.52842/conf.caadria.2022.1.403
summary Sketching is a craft supporting the development of ideas and design intentions, as well as an effective tool for communication during the early architectural design stages by making them tangible. Even though sketch-based interaction is a promising approach for Computer-Aided Architectural Design (CAAD) systems, it remains a challenge for computers to recognise information in a sketch. Design protocol studies conducted to deconstruct the sketch and sketching process collect solely qualitative data so far. However, the 'metis' projects aim to create an intelligent design assistant, using an artificial neural network (ANN), in the manner of Negroponte‚s Architecture Machine. By assimilating to the user's idiosyncrasies, the system suggests further design steps to the architect to improve the design decision making process for economic growth, qualitative self-education through the dialogue and reducing stress. For training such ANN quantitative data is needed. In order to produce quantifiable results from such a study, we propose our open-source web-tool ‚Sketch Protocol Analyser‚. By correlating different parameters (i.e. video, transcript and sketch built) through the same labels and their timestamps, we create quantitative data for further use.
keywords Design Protocol Studies, Sketching, Data Collection, Architectural Design Process, ANN, SDG 3, SDG 4, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_201
id ecaade2022_201
authors Buš, Peter, Sridhar, Nivedita, Zhao, Yige, Yang, Chia-Wei, Chen, Chenrui and Canga, Darwin
year 2022
title Kit-of-Parts Fabrication and Construction Strategy of Timber Roof Structure - Digital design-to-production workflow for self-builders
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 449–458
doi https://doi.org/10.52842/conf.ecaade.2022.1.449
summary This project builds upon a premise that complex double-curved geometries can be built out of simple, planar, and straight elements. As such, it is possible to simplify manufacturing, construction, and assembly processes, as well as decrease the delivery time and cost. When operating with planar and simple components in the form of Kit-of- Parts there is an assumption that such components can be easily used by self-builders, not necessarily building experts. This can empower participatory activities leading to a more sustainable and resilient engaged community. This hypothesis is evaluated through the process of design for manufacture and assembly project of the timber shell, supported by proposed advanced computational design-to-production workflow utilising digital fabrication technologies such as CNC machining and robotic milling. The assembled and erected structure is evaluated in the scope of constructability, deliverability, and operability. Therefore, the focus of this project is to test, observe, experiment with, and learn from those aspects from the perspective of a fabricator, maker, and self-builder of the double-curved timber roof structure, while operating with smaller-scale components and smaller sub-assemblies, convenient for hands-on operations. The paper also discusses the limitations of such an approach.
keywords Design-to-Production Workflow, Robotic Digital Fabrication, Self-Builders, Structural Performance, Advanced Labelling
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_446008 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002