CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 676

_id ecaade2022_402
id ecaade2022_402
authors Neumayr, Robert
year 2022
title Agent-Based Semiology - Simulating office occupation patterns with conversation-based social models
doi https://doi.org/10.52842/conf.ecaade.2022.2.141
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 141–150
summary The importance of fostering formal and informal conversation to optimize office space performance has been well researched since the introduction of the 1970s cybernetic office layout strategies and recent research suggests, that formal and informal conversations at work can no longer be meaningfully separated, making efficient conversation patterns even more central to a successful office layout in the age of knowledge economy. In such a setup, social factors, like hierarchy, group membership, or expertise, contribute more to the formation of an office’s spatial occupation patterns than the space’s morphology itself. Consequently, standard tools of space evaluation, such as Space Syntax, that rely on the analysis of a space's topological description, yield inconclusive results, as the quantitative description of the space can no longer be matched to the changing patterns of interactions observed in that space. The research methodology described in this paper, therefore, aims to optimize contemporary office environments in a different way. Embedded in the conceptual framework of agent-based simulation, this research does not foreground the configuration of space itself but focuses on developing a population of agents sophisticated enough to allow for the emergence of an a simplified, yet plausibly life-like collective office scenario. Here, special occupation patterns evolve over time based on series of subsequent communication events between all agents in a space, where participants, locations, total numbers of various types of conversations, and durations depend on previous events as well as on a simplified social model. Different office scenarios are then analyzed against a set of selected criteria to identify successful office configurations. This paper describes the methodology’s underlying concepts and setup, introduces the agent-based simulations that were developed and presents and speculate about the preliminary research results and findings.
keywords Design Methodology, Agent-Based Modelling, Office Space Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_16
id ecaade2022_16
authors Bailey, Grayson, Kammler, Olaf, Weiser, Rene, Fuchkina, Ekaterina and Schneider, Sven
year 2022
title Performing Immersive Virtual Environment User Studies with VREVAL
doi https://doi.org/10.52842/conf.ecaade.2022.2.437
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 437–446
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learns the relationship between building geometry, typology, and construction type with the Global Warming potential (GWP) in tons of C02 equivalent (tCO2e). The first one, a regression model, can predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly through early predictions of the structure’s material and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Pre-Occupancy Evaluation, Immersive Virtual Environment, Wayfinding, User Centered Design, Architectural Study Design
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia22_586
id acadia22_586
authors Bruun, Edvard P. G.; Besler, Erin; Adriaenssens, Sigrid; Parascho, Stefana
year 2022
title ZeroWaste - Towards Computing Cooperative Robotic Sequences for the Disassembly and Reuse of Timber Frame Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 586-597.
summary ZeroWaste is a project about repositioning existing timber building stock within a circular economy framework. Rather than disposing of these buildings at the end of their life, the goal is to view them as stores of valuable resources that can be readily reused. By doing this, material life cycle becomes an integral design consideration alongside planning for the efficient disassembly and reuse of these structures. In this paper, the computational workflow is presented for the first phase of the project: planning a cooperative robotic disassembly sequence for the scaffold-free removal of members from existing timber structures. 
series ACADIA
type normal paper
email
last changed 2024/03/08 13:54

_id caadria2022_114
id caadria2022_114
authors Dong, Zhiyong, Lin, Jinru, Wang, Siqi, Xu, Yijia, Xu, Jiaqi and Liu, Xiao
year 2022
title Where Will Romance Occur, A New Prediction Method of Urban Love Map through Deep Learning
doi https://doi.org/10.52842/conf.caadria.2022.1.213
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 213-222
summary Romance awakens fond memories of the city. Finding out the relationship between romantic scene and urban morphology, and providing a prediction, can potentially facilitate the better urban design and urban life. Taking the Yangtze River Delta region of China as an example, this study aims to predict the distribution of romantic locations using deep learning based on multi-source data. Specifically, we use web crawlers to extract romance-related messages and geographic locations from social media platforms, and visualize them as romance heatmap. The urban environment and building features associated with romantic information are identified by Pearson correlation analysis and annotated in the city map. Then, both city labelled maps and romance heatmaps are fed into a Generative Adversarial Networks (GAN) as the training dataset to achieve final romance distribution predictions across regions for other cities. The ideal prediction results highlight the ability of deep learning techniques to quantify experience-based decision-making strategies that can be used in further research on urban design.
keywords Romance Heatmap, Generative Adversarial Networks, Deep Learning, Big Data Analysis, Correlation Analysis, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_161
id ecaade2022_161
authors Kharbanda, Kritika, Papadopoulou, Iliana, Pouliou, Panagiota, Daw, Karim, Belwadi, Anirudh and Loganathan, Hariprasath
year 2022
title LearnCarbon - A tool for machine learning prediction of global warming potential from abstract designs
doi https://doi.org/10.52842/conf.ecaade.2022.2.601
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 601–610
summary The new construction that is projected to take place between 2020 and 2040 plays a critical role in embodied carbon emissions. The change in material selection is inversely proportional to the budget, as the project progresses. Given the fact that early-stage design processes often do not include environmental performance metrics, there is an opportunity to investigate a toolset that enables early-stage design processes to integrate this type of analysis into the preferred workflow of concept designers. The value here is that early-stage environmental feedback can inform the crucial decisions that are made in the beginning, giving a greater chance for a building with better environmental performance in terms of its life cycle. This paper presents the development of a tool called LearnCarbon, as a plugin of Rhino3d, used to educate architects and engineers in the early stages about the environmental impact of their design. It facilitates two neural networks trained with the Embodied Carbon Benchmark Study by Carbon Leadership Forum, which learn the relationship between building geometry, typology, and structure with the Global Warming potential in tCO2e. The first one, a regression model, is able to predict the GWP based on the massing model of a building, along with information about typology and location. The second one, a classification model, predicts the construction type given a massing model and target GWP. LearnCarbon can help improve the building life cycle impact significantly, through early predictions of the structure’s material, and can be used as a tool for facilitating sustainable discussions between the architect and the client.
keywords Machine Learning, Carbon Emissions, LCA, Rhino Plug-in
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_278
id caadria2022_278
authors Ortner, F. Peter and Tay, Jing Zhi
year 2022
title Optimizing Design Circularity: Managing Complexity in Design for Circular Economy Through Single and Multi-Objective Optimisation
doi https://doi.org/10.52842/conf.caadria.2022.1.191
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
summary This paper advances the application of computational optimization to design for circular economy (CE) by comparing results of scalarized single-objective optimization (SOO) and multi-objective optimization (MOO) to a furniture design case study. A framework integrating both methods is put forward based on results of the case study. Existing design frameworks for CE emphasize optimization through an iterative process of manual assessment and redesign (Ellen MacArthur Foundation, 2015). Identifying good design solutions for CE, however, is a complex and time-consuming process. Most prominent CE design frameworks list at least nine objectives, several of which may conflict (Reike et al., 2018). Computational optimization responds to these challenges by automating search for best solutions and assisting the designer to identify and manage conflicting objectives. Given the many objectives outlined in circular design frameworks, computational optimisation would appear a priori to be an appropriate method. While results presented in this paper show that scalarized SOO is ultimately more time-efficient for evaluating CE design problems, we suggest that given the presence of conflicting circular design objectives, pareto-set visualization via MOO can initially better support designers to identify preferences.
keywords Design for Circular Economy, Computational Optimisation, Sustainability, Design Optimisation, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_118
id caadria2022_118
authors Reitberger, Roland, Banihashemi, Farzan and Lang, Werner
year 2022
title Sensitivity and Uncertainty Analysis of Combined Building Energy Simulation and Life Cycle Assessment, Implications for the Early Urban Design Process
doi https://doi.org/10.52842/conf.caadria.2022.2.629
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 629-638
summary Life Cycle Assessment (LCA) is a suitable approach for evaluating environmental impact (e.g. Global Warming Potential (GWP)) related to construction elements and building operation. Since both contribute significantly to the lifecycle based GWP of buildings, combined consideration is necessary. This applies especially for the early design stages when measures for climate change mitigation can be implemented in a cost-efficient manner. In this paper, we describe a sensitivity and uncertainty analysis (SA/UA) for energy simulation and LCA with a total of 8,000 parameter combinations. Thereby, we investigated valuable input for the setup of a collaborative design process with limited information. Standardised Regression Coefficients (SRCs) were used to obtain sensitivity and resulting uncertainties were investigated. The results indicate Primary Energy Source (PES), compactness and energy standard to be the most important information for the robustness of the combined LCA approach. Uncertainty can be reduced by e.g. defining the energy system in an early stage or by designing compact buildings. Related to the early design stages, the application of combined approaches for SA and UA is recommended, as the results differ for embodied and operational emissions.
keywords early design stages, Sensitivity Analysis (SA), Uncertainty Analysis (UA), Life Cycle Assessment (LCA), urban scale, synergy potential, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220108
id ijac202220108
authors Alsalman, Osama; Halil Erhan
year 2022
title D-ART for collaboration in evaluating design alternatives
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 114–128
summary Evaluating design ideas is an integral part of designing built environments. It involves multiple stakeholders with diverse backgrounds reviewing design solutions by studying their form and performance data. Although there are computational systems for supporting evaluation tasks, they are either highly specialised for designers or configured for a particular workflow with limited functions. We developed a Design Analytics method aiming at a collaborative and data-driven evaluation of alternatives in the design-evaluate-feedback cycle. Adopting this approach, we introduce D-ART as a prototype system composed of customisable Web interfaces for presenting design alternatives, enabling stakeholders to participate in data-informed discourse on alternatives and providing feedback to the design team. Its system design considers requirements gathered through literature review, critical analysis of the existing systems and collaboration with our industry partners. Finally, we assessed D-ART’s design through an expert review evaluation, which generally reported positive results on the system’s goals.
keywords Data-driven design, participatory design, design analytics, design alternatives, visual analytics, design evaluation
series journal
last changed 2024/04/17 14:29

_id ecaade2022_221
id ecaade2022_221
authors Delikanli, Burak and Gül, Leman Figen
year 2022
title Towards to the Hyperautomation - An integrated framework for Construction 4.0: a case of Hookbot as a distributed reconfigurable robotic assembly system
doi https://doi.org/10.52842/conf.ecaade.2022.2.389
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 389–398
summary Almost every technological and industrial concept changes the built environment around us and our understanding of the architectural practice. Recently, Hyperautomation, an all-encompassing digital transformation with the help of advanced techniques, has been presented as a game-changing concept that can affect any industry. Despite this promising concept, the Architecture, Engineering, and Construction (AEC) industry seems far behind the latest technological breakthroughs and automation of processes compared to other industries. Therefore, this study provides a better understanding of adopting the novel Hyperautomation paradigm in the AEC industry by focusing on Industry 4.0. In this context, the first section introduces the Construction 4.0 concept, its counterpart in the AEC industry, briefly mentions fundamental approaches and indicates the need for a framework. The second section introduces an integrated framework throughout the entire building life-cycle for design and construction processes and exemplifies the stages in an autonomous system and their interrelationships. The third section presents a hypothetical case, a distributed reconfigurable robotic assembly system, and the assembler ‘HookBot’ to understand the relationships in an autonomous system better. The last section discusses the place of the Hyperautomation paradigm in architecture.
keywords Autonomy, Autonomous Systems, Construction 4.0, Assembly Robotics
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_338
id caadria2022_338
authors Dias Guimaraes, Gabriela, Gu, Ning, Gomes da Silva, Vanessa, Ochoa Paniagua, Jorge, Rameezdeen, Rameez, Mayer, Wolfgang and Kim, Ki
year 2022
title Data, Stakeholders, and Environmental Assessment: A BIM-Enabled Approach to Designing-out Construction and Demolition Waste
doi https://doi.org/10.52842/conf.caadria.2022.2.587
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 587-596
summary Construction and Demolition waste has started to become a target in the path for a more sustainable industry mainly due to massive resource consumption, land depletion and emissions. As a substantial amount of waste originates due to inadequate decision-making during design, strategies to design-out waste are required. Accurate environmental impact of, not only the whole building, but construction materials and elements are crucial to the development of these strategies, but dependent on data availability, expert knowledge and proper sharing and storage of information. Hence, this study aims to investigate the relation between data, stakeholders and environmental assessment to properly build a design-out waste framework. An in-depth data collection from literature review and stakeholders' interviews guided the development of a conceptual framework to assist designers with information related to waste production and its reduction. After that, the necessary technical specifications for its adoption through a BIM environment were analysed. Its contribution is firstly on a shift of thinking during the design phase, as the goal is to provide environmental information so designers can take into consideration the long-term consequences of waste from different strategies and solutions; and secondly in the development of a computational tool that facilitates the design-out process.
keywords Construction and Demolition Waste, Design, BIM, Environmental Data, Stakeholders, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_000
id ascaad2022_000
authors El-Bastawissi, Ibtihal Y.; Abdelmohsen, Sherif
year 2022
title ASCAAD 2022: Hybrid Spaces of the Metaverse
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, 743 p.
summary The ASCAAD 2022 theme focuses on Hybrid Spaces of the Metaverse, with the aim of unraveling the opportunities and potentials of architecture in the age of the Metaverse. Historically space was always the container of people’s activities and memories; it is the collective reflection of their life styles. Walls, floors and ceilings of architectural spaces witnessed the moments of joy and happiness, as well as moments of misery that changed human history, from the signing of the United Nations Declaration post WWII, to the first I-phone sold in the Apple store; history is written inside architectural spaces. The new era of the 4th industrial revolution, which is associated with digital transformation, will unlock new opportunities for architects, interior designers and whoever will enter the domain of the metaverse. The metaverse will not only serve as a portal to a new world, but also as an extension to new activities such as commercial, social, educational and business activities that will thrive in the new virtual realm. The metaverse will act as the natural transcendence of technological advancements carrying new potentials to the architectural profession. Active Worlds, Second Life, Roblox and Fortnite are all early versions of what we will witness in the next few years, shifting from entertainment to full commercial, official and governmental activities; all will be hosted inside virtual and hybrid spaces. A new era will start inside virtual realms; real economy will rise inside virtual architecture but without the multiple physical or structural constraints that limit physicality anymore such as gravity, and day and night cycles; no oxygen is needed anymore. But this time, human activities will not only be recorded and saved but also attended and lived in real time. Computational design will continue to thrive and even evolve into new forms aligning with new changes and challenges of the metaverse. Hybrid spaces are the spaces that will be built as a virtual extension of real spaces. They will be in connection to real spaces and reflecting their activities on a real time basis. On the other hand, pure virtual spaces will occur, trespassing time zones and geographical barriers. The importance of hybrid experiences was most realized after the pandemic lockdowns; and now is the time to invent new design methodologies and new theories as a natural transcendence of architecture profession. Hyperlinks portals replacing staircases and elevators, physically impossible structures, open budget interiors, teleportation are all new notions emerging with the new domain. Today, virtual spaces are hosted on various cloud services and registered as Non-Fungible Tokens (NFTs). They are experienced as immersed spaces using headsets or semi immersed spaces presented through laptops and/or mobile screens. With the new accelerating pace of technology, there is high possibility for integration within our neural networks to be experienced in our minds with just closing our eyes in the near future.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ascaad2022_103
id ascaad2022_103
authors Farrag, Fatma; Khalil, Heba Allah
year 2022
title The Virtuality of Intelligent Cities: The Road to Hybridizing our New Cities
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 562-576
summary The incorporation IoT into our social systems and the digitization of our everyday life has become the new norm for societies worldwide. This study posits that digitization should apply to our cities as well. The digital aspect of technology is not always tangible – even in the figurative sense of grasping a concept – and its allure lies in this virtual aspect. That is the starting point of discussion in this paper – the virtuality of intelligent cities, the intangible forces that make these new cities smart, and how said forces can be incorporated to create new smart hybrid cities that also aim to be intelligent, connected, and efficient. This research paper was designed to first set a strong theoretical base, which includes how the Circular City Actions CCA assessment framework works. This framework is applied to the three virtual methods, Sharing Economy, Smart Parking, and Virtual Power Plants VPP, as well as an international case study, the VPP in South Australia. The CCA framework was then applied to the data gathered for the local case study, the New Administrative Capital NAC in Egypt, which was chosen because it is the largest smart city being constructed currently in Egypt right now. Since it is still not fully operational, the data collected was based on governmental plans, proposals, and published papers about the city released within the last 5 years. After theoretically incorporating the proposed virtual methods into the NAC’s plans and reapplying the assessment framework, the results were greatly improved in different aspects. This study made it clear that the NAC has a strong hypothetical foundation to become an intelligent connected city, but there were some missed opportunities of incorporating virtual intelligent solutions to be implemented at different levels as the three proposed in this paper to reach its goal.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ecaade2022_154
id ecaade2022_154
authors Ferretti, Maddalena, Di Leo, Benedetta, Quattrini, Ramona and Vasic, Iva
year 2022
title Creativity and Digital Transition in Central Apennine - Innovative design methods and digital technologies as interactive tools to enable heritage regeneration and community engagement
doi https://doi.org/10.52842/conf.ecaade.2022.2.187
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 187–196
summary This contribution proposes strategies of reactivation of the central Apennine of Marche Region in Italy through creative design methods and virtual technologies. The research activities are connected to two related PhD projects: one focusing on architectural and urban design, the other one on heritage digitalization and new technologies and to other research activities of our interdisciplinary team. Cagli, a small town of 8.000 inhabitants, is currently undergoing socio-economic transformations that need to be addressed strategically with a cultural and spatial perspective. The research explores regenerative solutions and local development strategies to enhance the city and its cultural landscape. Participatory processes aided by digital tools and innovative design methods are tested in Cagli’s living lab. The final output of the overall research is a “Reactive Map” combining a trans-scalar and multidisciplinary territorial analysis with visions to identify “potential spaces”. The map is a design tool to define a shared strategy of enhancement of the city and its heritage. With this paper we present one of the methodological steps of the research, a WEB-APP built upon a point clouds database and assessed through a preliminary user test. The highly descriptive 3D environment is able to collect analysis and to be enriched in a participatory way during planned activities of co-thinking. The 3D environment, improved with interviews, plans, historical pictures and other media contents, is also paired with a virtual tour to offer a different representation of the “potential spaces”. The fully boosting 3D digital technology thus represents a viable and effective solution to involve citizens and an innovative and interdisciplinary tool for knowledge advancement in the fields of architectural and urban design and heritage regeneration.
keywords Tangible and Intangible Heritage, Co-Thinking, Trans-Scalar Approach, Narrative, Point Clouds Exploitation, Interactive Annotation, Virtual Reality
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_263
id caadria2022_263
authors Gough, Phillip, Globa, Anastasia and Reinhardt, Dagmar
year 2022
title Computational Design with Myco-Materials
doi https://doi.org/10.52842/conf.caadria.2022.2.649
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 649-658
summary A sustainable, circular, post-carbon economy of the future will take waste material from one part of the economy and give it new value. This will reduce energy and material leakage from the economy and create new opportunities for innovation in materials. Myco-materials provide an opportunity to transform ligno-cellulosic matter, such as waste cardboard and sawdust, into useful materials. This is achieved by using a fungus to bind together these substrates into useful forms. This paper explores how computational design parameters can be informed from the mycelia growth process. We created several prototype forms that show behaviour of myco-materials through the growing and drying process. These show how inclusion of cardboard substructures may improve the performance of the resulting material by increasing its stability during the drying process. We also demonstrate limits to the size of myco-materials through computational design. Myco-materials will likely be part of a sustainable post-carbon economy, by bringing new value to waste material, and this paper shows how computational design can be informed by mycelial growth.
keywords Mycelia, Biodesign, Growing Designs, Computational Design, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2024_365
id caadria2024_365
authors Lahtinen, Aaro, Gardner, Nicole, Ramos Jaime, Cristina and Yu, Kuai
year 2024
title Visualising Sydney's Urban Green: A Web Interface for Monitoring Vegetation Coverage between 1992 and 2022 using Google Earth Engine
doi https://doi.org/10.52842/conf.caadria.2024.2.515
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 515–524
summary With continued population growth and urban expansion, the severity of environmental concerns within cities is likely to increase without proper urban ecosystem monitoring and management. Despite this, limited efforts have been made to effectively communicate the ecological value of urban vegetation to Architecture, Engineering and Construction (AEC) professionals concerned with mitigating these effects and improving urban liveability. In response, this research project proposes a novel framework for identifying and conveying historical changes to vegetation coverage within the Greater Sydney area between 1992 and 2022. The cloud-based geo-spatial analysis platform, Google Earth Engine (GEE), was used to construct an accurate land cover classification of Landsat imagery, allowing the magnitude, spatial configuration, and period of vegetation loss to be promptly identified. The outcomes of this analysis are represented through an intuitive web platform that facilitates a thorough understanding of the complex relationships between anthropogenic activities and vegetation coverage. A key finding indicated that recent developments in the Blacktown area had directly contributed to heightened land surface temperature, suggesting a reformed approach to urban planning is required to address climatic concerns appropriately. The developed web interface provides a unique method for AEC professionals to assess the effectiveness of past planning strategies, encouraging a multi-disciplinary approach to urban ecosystem management.
keywords Urban Vegetation, Web Interface, Landsat Imagery, Land Cover Classification, Google Earth Engine
series CAADRIA
email
last changed 2024/11/17 22:05

_id cdrf2022_65
id cdrf2022_65
authors Nicolas Stephan, Marine Lemarié, and Kristina Schinegger
title Common Ground—Online Platforms for Bottom-Up Collaborative Decision Making in Design Education
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_6
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Co-creation and real-time collaboration have always been an integral potential of digital design methodologies and have been accelerated by the rapid digitalization of teaching due to current societal developments. This paper discusses the prototype of a real-time multiplayer building platform as a video game developed for a first-year design studio impacted by pandemic-related teaching restrictions. The aim was to develop a methodology that enables first-year students to meet peers, build models collaboratively, and teach implicit design knowledge such as aesthetics and formal analysis while allowing individual creativity within the populous class. Through a combination of a step-by-step iterative design system and a real-time decentralized multi-player platform, students can work collaboratively on common digital designs. The design method is based upon building units and individualized strategies of aggregation and differentiation that are built up into larger structures. Special focus is paid to how new online platforms created for architecture education can migrate the advantages of physical intuitive design methods to a digital setting and eventually fill the gap of lacking implicit knowledge pedagogies.
email
last changed 2024/05/29 14:02

_id sigradi2022_232
id sigradi2022_232
authors Paniagua Hernández, Viviana; Vargas Soto, Emily
year 2022
title Promoting experimentation and integrated design process through the exploration of the steam bending technique in wood: Essay F8 challenging orthogonality
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 857–868
summary Due to the lack of experimentation with wood on a real scale, which is needed to generate design proposals and discuss aesthetic, spatial, and structural alternatives in a multidisciplinary way. An experimental workshop for architecture and engineering students was developed. To integrate design modeling, and fabrication, using the wood steam bending technique. It was explored following a collaborative methodology. The main results obtained included conceptualization sessions, prototyping, physical and digital modeling, and development of work strategies (base plan, scaffolding, production, assembly, iteration, adjustments, and detailing) until the proposal scope met the expectations. From this workshop, remains the challenge of converting empirical knowledge into more precise work parameters. The need to complement the design phases with parametric software modeling, structural analysis, and fabrication methods to open new teaching possibilities was identified.
keywords Interdisciplinary Design, Construction Experience, Steam Wood Bending
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2022_448
id ecaade2022_448
authors Papanikolaou, Kyratsoula-Tereza, Liapi, Katherine and Sibetheros, Ioannis
year 2022
title Environmental Impact Assessment and Visualization of Rain-Water Best Management Practices for Urban Blocks - An "architect-friendly" simulation model
doi https://doi.org/10.52842/conf.ecaade.2022.2.075
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 75–82
summary In order to implement stormwater best management practices (BMPs) in urban blocks in Greece and other cities with warm and dry climates, such as green roofs, porous pavements etc., it is crucial that architects are able to assess their environmental impact during the design process in an efficient and simple way, without the requirement of an in depth understanding of the complex hydrological processes. To achieve the above, an “architect-friendly” computer-based model, under development by the authors, is presented. The model can be used as a decision support tool by allowing an assessment of the efficacy of non-conventional, water-sensitive, stormwater management strategies in an urban environment, measured by the stormwater runoff mitigation and temperature decrease. Wind flow simulation data from an external CFD model can be integrated into the proposed model, in order to visualize wind flow patterns in selected urban blocks. The user is able to select different stormwater BMPs from a BMP library and apply them on the 3D urban block model, in order to achieve an improved “water sensitive” state. The ENVI-MET plugin for Rhino is used for simulating temperature decrease and the SCS Curve Number method for determining stormwater runoff reduction, caused by each BMP application. The visualization of the results in the graphical interface of the Grasshopper programming environment facilitates the study of the environmental impact of stormwater BMPs in urban blocks and the comparison of different stormwater management scenarios. Several urban blocks in Athens will be used as case studies to test the proposed model and assess the efficiency of the visualization process.
keywords Stormwater Best Management Practices, Urban Blocks, Runoff Mitigation, Temperature Reduction, Decision Support Tool, Environmental Impact Visualization
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_69
id caadria2022_69
authors Rogeau, Nicolas, Rezaei Rad, Aryan, Vestartas, Petras, Latteur, Pierre and Weinand, Yves
year 2022
title A Collaborative Workflow to Automate the Design, Analysis, and Construction of Integrally-Attached Timber Plate Structures
doi https://doi.org/10.52842/conf.caadria.2022.2.151
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
summary This paper introduces a computational framework that fosters collaboration between architects, engineers, and contractors by bridging the gap between architectural design, structural analysis, and digital construction. The present research is oriented toward the formulation of an automatic design-to-construction pipeline for Integrally-Attached Timber Plate Structures (IATPS). This construction system is based on assembling timber panels through the sole interlocking of wood-wood connections inspired by traditional Japanese joinery. Prior research focused on developing distinct computational workflows and dealt with the automation of 3D modelling, numerical simulation, fabrication, and assembly separately. In the current study, a single and interactive design tool is presented. Its versatility is demonstrated through two case studies, as well as the assembly of a physical prototype with a robotic arm. Results indicate that efficiency in terms of data flow and stakeholder synergy is considerably increased. The proposed approach contributes to the†Sustainable Development Goal (SDG) 11 by facilitating the collaborative design of sustainable timber structures. Besides, the research also contributes to SDG 9 as it paves the way for sustainable industrialisation of the timber construction sector through streamlined digital fabrication and robotic assembly processes. This reduces manufacturing time and associated costs while leveraging richer design possibilities.
keywords Timber plate structures, Timber joints, Collaborative design, Interdisciplinary design, Structural performance assessment, Robotic assembly, SDG 11, SDG 9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_30
id ecaade2022_30
authors Sopher, Hadas, Casakin, Hernan and Gero, John S.
year 2022
title Effect of Immersive VR on Student-Tutor Interaction in Design Crits
doi https://doi.org/10.52842/conf.ecaade.2022.1.123
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 123–132
summary Immersive Virtual Reality (iVR) systems form a representational medium for student-tutor collaboration in studio crits through a shared presence in a life scale display of the design, making them relevant for design crits where students and tutors interact in developing a solution to a design problem. iVRs are known to support design activity. However, research focusing on the impact of iVRs on student-tutor interaction is scarce, creating a gap in integrating these systems as educational settings. In response, this research analyzes a natural case study of student-tutor interaction in two architecture studio crits that used the iVR and non-immersive media. We employed the Function- Behaviour-Structure ontology to track the design issues generated for each medium. Further analysis identified the distribution of cognitive effort measured by problem- solution indexes. Preliminary results show large differences when using the two media: The iVR was found to support a higher frequency of solution-focused issues generated by the student and to maintain a lower Problem-Solution Index for the student than for the tutor, serving as an empirical foundation for further research on the effects of deploying this technology in the design studio.
keywords Immersive VR, Studio, Design Cognition, FBS, Student-Tutor Interaction
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_164928 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002