CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id ascaad2022_004
id ascaad2022_004
authors Falih, Zahraa; Mahdavinejad, Mohammadjavad; Tarawneh, Deyala; Al-Mamaniori, Hamza
year 2022
title Solar Energy Control Strategy using Interactive Modules
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 117-138
summary The concept of interactive canopy emerged as a notable manifestation of smart buildings in architectural endeavors, using artificial intelligence applications in computational architecture, interactive canopies came as a potential response for living organisms to combat external environmental changes as well as reduce energy consumption in buildings. This research aims to explore architecture with higher efficiency through the impact of environmentally technological factors on the design form by introducing solar energy into the design process through the implementation of interactive curtains that interact with the sun in the form of an umbrella. The main objective of the umbrellas is to protect the users from the sun's harmful rays. After designing an interactive cell using Grasshopper, the methodology follows an analytical and experimental approach, the analytical section is summarized by conducting a case study of multiple models and analyzing the techniques used in these models to discover the significant advantages and disadvantages of the design. While the experimental section demonstrates the mechanism for implementing the interactive modules. The research suggests that by designing an interactive canopy that responds to external changes and senses solar radiation in ways that when the intensity of solar radiation increases and the sun is perpendicular to the dynamic units, will lead to maintaining a more balanced level of illumination. The work efficiency is studied by simulating it by Climate Studio.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_118
id caadria2022_118
authors Reitberger, Roland, Banihashemi, Farzan and Lang, Werner
year 2022
title Sensitivity and Uncertainty Analysis of Combined Building Energy Simulation and Life Cycle Assessment, Implications for the Early Urban Design Process
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 629-638
doi https://doi.org/10.52842/conf.caadria.2022.2.629
summary Life Cycle Assessment (LCA) is a suitable approach for evaluating environmental impact (e.g. Global Warming Potential (GWP)) related to construction elements and building operation. Since both contribute significantly to the lifecycle based GWP of buildings, combined consideration is necessary. This applies especially for the early design stages when measures for climate change mitigation can be implemented in a cost-efficient manner. In this paper, we describe a sensitivity and uncertainty analysis (SA/UA) for energy simulation and LCA with a total of 8,000 parameter combinations. Thereby, we investigated valuable input for the setup of a collaborative design process with limited information. Standardised Regression Coefficients (SRCs) were used to obtain sensitivity and resulting uncertainties were investigated. The results indicate Primary Energy Source (PES), compactness and energy standard to be the most important information for the robustness of the combined LCA approach. Uncertainty can be reduced by e.g. defining the energy system in an early stage or by designing compact buildings. Related to the early design stages, the application of combined approaches for SA and UA is recommended, as the results differ for embodied and operational emissions.
keywords early design stages, Sensitivity Analysis (SA), Uncertainty Analysis (UA), Life Cycle Assessment (LCA), urban scale, synergy potential, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_297
id sigradi2022_297
authors Roco, Miguel
year 2022
title ePortfolio as a Techno-pedagogical Strategy for Networked Learning in the Architectural Design Studio
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1075–1086
summary This paper shows and describes the experience of the ePortfolio implementation in architectural training for promoting Networked Learning (NL). The aim was to analyze the potential of ePortfolio, as a techno-pedagogical strategy to develop and enhance connections and learning integrations among students who belong in the second year of the Architectural Design Studio. The research had a descriptive methodology with a mixed approach over fourteen cohorts of the same training cycle across the years 2012 to 2018, considering a total of 336 students. The results reveal that ePortfolio, conceived inside the techno-pedagogical model, articulates a set of learning connections between students and learning situations and promotes the construction of an active collaboration net, which evidence NL development in the formative process.
keywords ePortfolio, Networked Learning, ICT, Architectural Teaching, Techno-pedagogy
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2022_223
id caadria2022_223
authors Kim, Jong Bum, Oprean, Danielle, Cole, Laura and Zangori, Laura
year 2022
title Net Zero Game: A Pilot Study of Game Development for Green Building Education in Rural Schools
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 455-464
doi https://doi.org/10.52842/conf.caadria.2022.2.455
summary The research investigates the design and development of a serious game to teach green building design and energy literacy in rural middle schools in the United States. The paper presents a pilot study, education mini-game development integrated with parametric BIM and energy simulations. The game scenario was built on the developed science curriculum modules in our funded research, teaching building energy technologies such as daylighting, artificial lighting, window configurations, building materials, solar panels, etc. The mini game presents a baseline science lab and a media library of typical public schools in the United States. The players have the opportunity to improve energy literacy in several ways: manipulating the building configurations and the energy options, reviewing energy cost and the emission level changes, and monitoring the performance from the dashboards. This paper presents background theory, curriculum design, the mini-game development framework, methods and tools for energy simulation and BIM visualization, and the findings and challenges.
keywords Serious Game, Energy Literacy, Green Building Education, Parametric BIM, Energy Simulation, SDG 4, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_80
id caadria2022_80
authors Anifowose, Hassan, Yan, Wei and Dixit, Manish
year 2022
title Interactive Virtual Construction ‚ A Case Study of Building Component Assembly towards the adoption of BIM and VR in Business and Training
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 547-556
doi https://doi.org/10.52842/conf.caadria.2022.2.547
summary Present day building product manufacturers face difficulties in scaling businesses. Key decisions surrounding technology adoption are typically measured against feasibility of use and long-term profit. Building Information Modelling (BIM) and Virtual Reality (VR) provide the potential for teaching building product assembly to employees and construction contractors. This eliminates the need for deploying training personnel to job sites, reduces manufacturing carbon footprint and wastes in product samples required for training. VR content development is difficult and performance within VR applications must be near reality in order to improve adoption of such technology through training. This exploratory study investigates important factors that enhance adoption in business cases through training. We developed an innovative BIM+VR prototype for SwiftWall; a temporary wall manufacturing company, highlighting rigorous processes for in-house BIM anatomy and VR development. This paper provides a step-by-step approach to replicate the prototype. The prototype was tested in several demonstration sessions. The approximate time to install 40 linear feet of SwiftWall is 30-minutes at the simplest level. This timing is equivalent to 28 linear feet installation in 21-minutes achieved with the BIM+VR prototype demonstration. The matching timing results show a significant potential for adoption in business, improved sustainability and employee training from a time and cost-efficient standpoint. Concerns and key issues from development to deployment are discussed in detail. The BIM+VR virtual construction prototype provides adoption potential for training remote partners thereby increasing possibilities of SwiftWall scaling to distributors and product carriers across a larger geographic region.
keywords BIM, Virtual Reality, Unity, Training, Game Design, Construction Assemblage, Construction Material, Virtual Construction, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_104
id sigradi2022_104
authors Bielski, Jessica; Eisenstadt, Viktor; Langenhan, Christoph; Petzold, Frank
year 2022
title Lost in architectural designing - Possible cognitive biases of architects during the early design phases
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 557–568
summary In order to meet the housing demands of the future, architects need to work faster and more efficiently while improving architectural quality. The metis projects aim to create an intelligent design assistant supporting architects during the early design stages through suggesting further design steps for spatial layouting, based on the best practice of reference buildings. By enhancing suggestions with explainability, the system offers insight to improve Human-System-Interaction (HSI), bridging the ‘black box’ problem. The explanations aim to either support the reasoning process or mitigate possible biases of architects, which can be rooted in the heuristic ‘System 1’, as well as the analytical ‘System 2’, drawing from the ‘dual process model’. Within this paper, we propose our approach to clarify the four main heuristic biases and the logical errors of architects, when using reference buildings, and their respective representation during the architectural design decision-making process.
keywords Decision Making, Biases, Explainability, XAI, Human System Interaction
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_152
id caadria2022_152
authors Deshpande, Rutvik, Nisztuk, Maciej, Cheng, Cesar, Subramanian, Ramanathan, Chavan, Tejas, Weijenberg, Camiel and Patel, Sayjel Vijay
year 2022
title Synthetic Machine Learning for Real-time Architectural Daylighting Prediction
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 313-322
doi https://doi.org/10.52842/conf.caadria.2022.1.313
summary "Synthetic Machine Learning‚ offers a revolutionary leap in real-time environmental analysis for conceptual architectural design. By integrating automatic synthetic data generation, artificial neural network (ANN) training and online deployment, Synthetic Machine Learning offers two main advantages over conventional simulation; First, it reduces the analysis time for a reference simulation from minutes to seconds; Second, it is possible to deploy ANN as a web service in an online design environment, which therein increases accessibility, significantly reducing simulation costs and setup time. The application of Synthetic Machine Learning to perform Daylight Autonomy (DA) and Spatial Daylight Autonomy (sDA) studies to maximise building daylighting for a given use, window to wall ratio, and floorplan arrangement is showcased through a preliminary demonstration work. Comparatively the use of algorithmically generated synthetic data versus real-world data is becoming ubiquitous in other disciplines, the advantages of this approach to the building design process are further discussed.
keywords Daylight Autonomy, machine learning, building energy performance, synthetic data-sets, SDG 7, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_156
id sigradi2022_156
authors Dornelas, Wallace; Martinez, Andressa
year 2022
title Towards a Parametric Variation of Floor Plans: a Preliminary Approach for Vertical Residential Buildings
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 151–162
summary In the context of the housing demands that respond to several family profiles, allied with the potential of the algorithmic approaches to Architecture, this paper aims to describe an exploratory process of possible solutions toward a generative system of housing distribution in vertical multifamily buildings. As a method, this work presents a parametric design process of a multifamily building, simulating a variety of shape solutions for apartment buildings, in a Grasshopper definition. The work also discusses the data transmission between the parametric modeling using Grasshopper in the Rhinoceros interface and the connection of the final design to Graphisoft’s Archicad BIM-based software. As a result, the parametric model allows several design solutions for several building shapes and contexts. For this study, to fully explore the design possibilities, we applied the method in the context of a Brazilian metropolitan city.
keywords Generative design, Visual algorithmic design, Parametric architecture, Housing
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_352
id caadria2022_352
authors Duran, Ayca, Iseri, Orcun Koral, Meral Akgul, Cagla, Kalkan, Sinan and Gursel Dino, Ipek
year 2022
title Compiling Open Datasets to Improve Urban Building Energy Models with Occupancy and Layout Data
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 669-678
doi https://doi.org/10.52842/conf.caadria.2022.2.669
summary Urban building energy modelling (UBEM) has great potential for assessing the energy performance of the existing building stock and exploring various actions targeting energy efficiency. However, the precision and completeness of UBEM models can be challenged due to the lack of available and reliable datasets related to building occupant and layout information. This study presents an approach that aims to augment UBEM with open-data sources. Data collected from open data sources are integrated into UBEM in three steps. Step (1) involves the generation of occupant profiles from census data collected from governmental institutions. Step (2) relates to the automated generation of building plan layouts by extracting data on building area and number of rooms from an online real-estate website. Results of Steps (1) and (2) are incorporated into Step (3) to generate residential units with layouts and corresponding occupant profiles. Finally, we make a comparative analysis between data-augmented and standard UBEM based on building energy use and occupant thermal comfort. The initial results point to the importance of detailed, precise energy models for reliable performance analysis of buildings at the urban scale. 0864108000
keywords urban building energy modelling, occupancy, residential building stock, unit layout Information, open-source datasets, energy demand, indoor thermal comfort, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_196
id caadria2022_196
authors Grisiute, Ayda, Shi, Zhongming, Chadzynski, Arkadiusz, Silvennoinen, Heidi, von Richthofen, Aurel and Herthogs, Pieter
year 2022
title Automated Semantic SWOT Analysis for City Planning Targets: Data-driven Solar Energy Potential Evaluations for Building Plots in Singapore
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 555-564
doi https://doi.org/10.52842/conf.caadria.2022.1.555
summary Singapore‚s urban planning and management is cross-domain in nature and need to be assessed using multi-domain indicators ‚ such as SDGs. However, urban planning processes are often confronted with data interoperability issues. In this paper, we demonstrate how a Semantic Web Technology-based approach combined with a SWOT analysis framework can be used to develop an architecture for automated multi-domain evaluations of SDG-related planning targets. This paper describes an automated process of storing heterogeneous data in a semantic data store, deriving planning metrics and integrating a SWOT framework for the multi-domain evaluation of on-site solar energy potential across plots in Singapore. Our goal is to form the basis for a more comprehensive planning support tool that is based on a reciprocal relationship between innovations in SWT and a versatile SWOT framework. The presented approach has many potential applications beyond the presented energy potential evaluation.
keywords Semantic Web, Knowledge Graphs, SWOT analysis, energy-driven urban design, SDG 11, SDG 7
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_471
id caadria2022_471
authors Kim, Taehoon, Hong, Soonmin, Panya, David Stephen, Gu, Hyeongmo, Park, Hyejin, Won, Junghye and Choo, Seungyeon
year 2022
title Development of Technology for Automatic Extraction of Architectural Plan Wall Lines for Concrete Waste Prediction Using Point Cloud
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 597-606
doi https://doi.org/10.52842/conf.caadria.2022.2.597
summary Recently, as more and more projects on residential environment improvement in cities are actively carried out, the cases of demolishing or remodelling buildings has been increasing. Most of the target buildings for such projects are made of concrete. In order to reduce energy use as well as carbon emissions, the amount of concrete used as a building material should be reduced. This is because the concrete is the largest amount of construction waste, which the exact amount of concrete needs to be predicted. The architectural drawings are essential for the estimation and demolition of building waste, but the problem is that most of the old buildings' drawings do not exist. The 3D scanning process was performed to create the plans for such old buildings instead of the conventional method that is long time-consuming and labour-intensive actual measurement. In this study, we scanned 40 old houses that were scheduled to be demolished. The result showed that the 3D scanned drawings' accuracy - 99.2% - was higher than the ones measured by the conventional way. Through the algorithm developed in this study, the various processes of demolition, drawing measurement, and discarding quantity prediction can be solved in one process, thereby reducing work efficiently. And, considering the reliability of the research results, it is possible to reduce the economic loss by predicting the exact amount of waste in advance. After that, if the algorithm, developed in this study, can be further subdivided and supplemented to identify the materials for each part of the old buildings, it will be able to propose an efficient series of processes that distinguish between recyclable materials and wastes and thereby efficiently dispose of them. 0864108000
keywords Point Cloud, Construction Waste, Parametric Design, Algorithm, Automatic Extraction, SDG 8
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_310
id acadia22_310
authors Koehler, Daniel
year 2022
title Building Synthetic Data Sets or How to Learn from Future Architectures?
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 310-317.
summary Simulating synthetic data can induce design speculation to machine learning applications. Leaning on density studies for modernist settlements, we propose an approach that mixes ratios of sets to generate buildings quickly. A case study exemplifies how quickly one can generate and analyze a set of buildings at the resolution of BIM modeling. We conclude that synthetic data sets could become a feature of daily design workflows due to being computationally inexpensive and easy to adapt.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ecaade2022_162
id ecaade2022_162
authors Kremer, Noemi, Bangratz, Martin, Beetz, Jakob and Förster, Agnes
year 2022
title GIS-Box Improving Data Literacy in Spatial Disciplines - Integrating spatial data modeling, processing and visualization in spatial study programs
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 525–534
doi https://doi.org/10.52842/conf.ecaade.2022.2.525
summary Data modelling, processing, and visualization are crucial competencies for geospatial study programs. Students of different geospatial study programs need to be strengthened in the use and application of digital tools of spatial analysis and visualization within the digitization of teaching. This paper presents an approach on how digital tools for spatial analysis and visualization can be introduced into the curricula of architecture, urban planning and geography studies, strengthening the interdisciplinary exchange and students’ data literacy. As a result, an interdisciplinary methodological teaching format for spatial analysis, the "GIS-Box" is introduced. The GIS-Box is developed as a modular toolbox to provide material for collaborative and self-taught learning in different Master and Bachelor degree programs. It offers video lectures as well as practical tutorials, including an introduction to data modelling and programming, with the aim of improving students' data literacy. Students also learn to use QGIS to create maps for applied spatial research. In order to provide a uniform technical basis for teaching Python programming, Jupyter Notebooks are used. The integration of Jupyter Notebooks allows combining theoretical and practical programming content interactively. In this paper, we present the implementation of the class, statistically assess student results and experiences from teaching. In addition, positive and negative aspects of integrating GIS-Box with digital tools in teaching are discussed and further opportunities to improving data literacy in teaching are outlined.
keywords GIS-Box, Digital Tools, Spatial Analysis, Data Literacy, Teaching
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_228
id ecaade2022_228
authors Körner, Andreas
year 2022
title Chromogenic Composites - A case study combining thermochromics with heat transfer simulations and digital fabrication in architectural education
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 291–300
doi https://doi.org/10.52842/conf.ecaade.2022.1.291
summary Over the last few decades, environmental considerations have become increasingly important in architecture. To predict and simulate material changes and environmental forces can help architects to articulate surfaces. In architectural education, an increasing amount of the curricula are engaging with aspects of energy design, sustainability, and environmental simulations. The successful integration of related novel technologies in education has been demonstrated in the past. This paper documents a technical seminar that focused on the combination of digital environmental simulations and smart materials to create chromogenic prototypes for environmentally responsive architectural composites. Thermochromic chromogenics are substances that reversibly change colour depending on temperature. Specifically, the task was to come up with novel techniques to combine such materials with varying substrates to achieve dynamic panels. The course design was informed by a variety of design research and learning concepts. Students were asked to use digital heat transfer simulations to predict the smart material changes of computationally designed panels. Each of the eight idiosyncratic prototypes was modified with a variety of techniques and coated with thermochromic ink to achieve complex heat signature patterns. The resulting chromogenic composites were documented and analyzed using photos and infrared thermography. The seminar’s results showed that the three aspects (simulation, material, fabrication) can help to introduce eco-relevant technologies to design education. For this paper, both the outcomes and the course design itself were reviewed to better understand the co-creation process of the three aspects. This evaluation provided a rich repertoire of possibilities to combine different technologies for creative environmental design in architecture; all while maintaining an engaging teaching environment.
keywords Education, Smart Materials, Simulation, Prototyping, Heat Transfer
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_505
id caadria2022_505
authors Nanasca, James and Beebe, Aaron G.
year 2022
title Dynamic Projection
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 39-48
doi https://doi.org/10.52842/conf.caadria.2022.1.039
summary Rarely are technologies of projection mapping (PM) and mixed reality (MR) used together with an architectural agenda. Dynamic Projection imagines the confluence of accessible PM and MR technologies and asks "How might we leverage the strengths of both technologies while obviating their weaknesses?‚ And then "How might this technology be of use in making architecture from within the Climate Movement?‚ First, we will examine the dormant potential of Projected MR by augmenting a physical model in an exhibition setting. The exhibition set-up deploys Unity and Vuforia to generate MR, and Mad Mapper to generate a projection mapped background space. Using this set-up reveals strengths in both technologies, which we can evaluate with a Cybernetically Enhanced Mixed Reality Framework. We can leverage this Projected MR as a suite of tools to make architecture a more active participant in the Climate Movement: for example, by augmenting buildings with statistics that could help reduce energy consumption or through the augmentation of the construction process, helping facilitate waste reduction through efficient construction. Our initial research is being expanded through development of a more versatile Projected MR platform with Dynamic Projection 02, in which we are utilizing better MR tools, more responsive PM tools, and an industrial robot to simulate various dynamic feedback systems. This expanded research design speculates on a 3-part exhibition that can respond with low latency via Projected MR controls during a public and private interactive experience.
keywords Projection Mapping, Augmented Reality, Projected Augmented Reality, Cybernetics, Mixed Reality, Responsible Consumption and Production, Climate Action, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ijac202220109
id ijac202220109
authors Ortner, F. Peter; Jing Zhi Tay
year 2022
title Resilient by design: Informing pandemic-safe building redesign with computational models of resident congestion
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 129–144
summary This paper describes a computational design-support tool created in response to safe-distancing measures enforced during the COVID-19 pandemic. The tool was developed for a specific use case: understanding congestion in crowded migrant worker dormitories that experienced high rates of COVID-19 transmission in 2020. Building from agent-based and network-based computational simulations, the tool presents a hybrid method for simulating building resident movements based on known or pre-determined schedules and likely itineraries. This hybrid method affords the design tool a novel approach to simultaneous exploration of spatial and temporal design scenarios. The paper demonstrates the use of the tool on an anonymised case study of a high-density migrant worker dormitory, comparing results from a baseline configuration against design variations that modify dormitory physical configuration and schedule. Comparisons between the design scenarios provide evidence for reflections on pandemic-resilient design and operation strategies for dor- mitories. A conclusions section considers the extent to which the model and case study results are applicable to other dense institutional buildings and describes the paper’s contributions to general understanding of configurational and operational aspects of resilience in the built environment.
keywords Design for resilience, evidence-based design, design support, agent-based model, schedule-based model, network analysis
series journal
last changed 2024/04/17 14:29

_id ijac202220406
id ijac202220406
authors Pibal, Sophia S.; Konstantin Khoss; Iva Kovacic
year 2022
title Framework of an algorithm-aided BIM approach for modular residential building information models
source International Journal of Architectural Computing 2022, Vol. 20 - no. 4, pp. 777–800
summary The digital transformation of the construction industry and the lack of integration of digital technologies in design and construction processes are the motivation for this research. BIM solutions enable new levels of design processes and provide platforms for computational design and novel approaches in the AEC industry. In computational design parametric, generative or algorithmic procedures are utilized to support, optimize, or replace manual processes. The combination of BIM and generative, parametric or algorithmic design forms a hybrid that aims to combine the advantages of both concepts and allows for generative design processes with the creation of BIM objects containing metadata. Along with the digital transformation and novel approaches in the AEC industry, modular construction aims to shift from mass production to mass customization and maximize opportunities for cost-effective, economical, and sustainable buildings. This paper addresses the approach of generating building information models using algorithm-aided design combined with BIM at an early design stage for modular multi-story residential buildings that are affordable and sustainable. In this study, we present the framework of an algorithm-aided BIM approach, from the concept of the generative algorithm to the evaluation approach and the proof of concept as the test of the framework
keywords Building information modeling, algorithm-aided design, algorithm-aided building information modeling, modular construction, mass customization
series journal
last changed 2024/04/17 14:30

_id ascaad2022_110
id ascaad2022_110
authors Salem, Mona; Moussa, Ramy
year 2022
title A Hybrid Approach Based on Building Physics and Machine Learning for Thermal Comfort Prediction in Smart Buildings
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 253-263
summary One of the most important challenges facing the world is the application of modern technology in order to create smart buildings that achieve sustainable development goals (SDGs). Thermal comfort and reduction of energy consumption in buildings are considered important factors which, in turn, are reflected in creating a healthy environment and improving human productivity. Internet of Things (IoT) provides an ideal solution for collecting real-time data on the factors affecting indoor thermal comfort and energy consumption. However, comfort level is subjective and depends on many factors, which may not be learned by conventional models, an integrated model depending on thermal comfort factors is needed. In this work, a hybrid physics-based model incorporated with machine learning techniques is used for the prediction of thermal comfort inside buildings. XGBoost (eXtreme Gradient Boost) algorithm method was used due to its abilities to handle complex problems. A calculated dataset was extracted from the physics-based model gathered with the environmental variables data such as humidity, moisture, temperature, and air velocity collected from IoT devices. The results show an improvement in the prediction of the thermal comfort approach as compared with the conventional models. The XGBoost algorithm can exhibit an effective solution for eliminating deficiencies of traditional models and can be used when designing smart buildings, simulating, and evaluating the designed buildings, controlling energy consumption, and achieving thermal comfort.
series ASCAAD
email
last changed 2024/02/16 13:38

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_83923 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002