CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 552

_id caadria2022_361
id caadria2022_361
authors Lok, Leslie and Bae, Jiyoon
year 2022
title Timber De-Standardized 2.0 : Mixed Reality Visualizations and User Interface for Processing Irregular Timber
doi https://doi.org/10.52842/conf.caadria.2022.2.121
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 121-130
summary Timber De-Standardized 2.0†is a mixed reality (MR) user interface (UI) that utilizes timber waste produced by manufacturing dimensional lumber, suggesting an expanded notion for "material usability‚ in timber construction. The expanded notion of designing with discarded logs not only requires new tools and technologies for cataloguing, structuring, and fabricating. It also relies on new methods and platforms for the visualization and design of these structures. As a†MR†UI,†Timber De-Standardized†enables professionals and non-professionals alike to seamlessly design with irregular logs and to create viable structural systems using an intuitive†MR†environment. In order to develop a†MR†environment with this level of competency, the research aims to finesse the visualization techniques in the immersive full-scale†3D†environment and to minimize the use of alternative 2D UI(s). The research methodology†focuses on†(1) cataloguing and extracting basic properties of various tree logs, (2)†refining mesh visualization for better user interaction, and†(3)†developing†the†MR†UI to increase user design agency with custom menu lists and operations.†This methodology will extend the usability of†MR†UI protocols to a broader audience while democratizing design and enabling the user as co-creator.
keywords Irregular Tree Logs, Wood Construction, Augmented and Mixed Realities, Mixed Reality User Interface, Co-Creative Design, Digital representation and visualization, SDG 9, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_349
id caadria2022_349
authors Lopez Rodriguez, Alvaro, Jaramillo Pazmino, Pablo Isaac and Pantic, Igor
year 2022
title Augmented Active-Bending Formwork for Concrete, A Manufacturing Technique for Accessible Local Construction of Structural Systems
doi https://doi.org/10.52842/conf.caadria.2022.2.181
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 181-190
summary This research introduces Augmented Reality (AR) for manufacturing concrete structures through an open platform for autonomous construction. The study was developed under the following scopes: computational algorithms for bending simulations, materiality tests, system implementation, and a set of Augmented Reality (AR) tools. AR devices offer a technological tool that allows for a self-built environment through holographic guidance, allowing the untrained workforce to participate in the process. This technology can help users select the system to construct through an Open-Source platform, reducing the gap between complex computational geometries and construction processes. The research aims to investigate a building system that could benefit the UN Objectives SDG 10 by increasing the access to technology in undeveloped communities, SDG 11 and SDG 12 by promoting a self-sustainable method of construction based on local resources and material efficiency. In conjunction with the development of the AR Platform and augmented manufacturing, a 1:1 prototype was built in Quito, Ecuador, with the help of seven people with no previous knowledge of digital tools or construction. Presenting a novel, fast, and affordable concrete formwork connected with AR assisted assembly methods that facilitate access to more efficient and advanced building technology.
keywords Mixed Reality, Distributed Manufacturing, Online Platforms, Affordability, Local Communities, SDG 10, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_391
id caadria2022_391
authors Burden, Alan, Donovan, Jared, Caldwell, Glenda and Belek Fialho Teixeira, Muge
year 2022
title Hybrid Digital Crafts With Collaborative Robotics
doi https://doi.org/10.52842/conf.caadria.2022.2.021
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 21-30
summary Bespoke manufacturers that fabricate for architecture and design rely on skill artisans such as patternmakers to remain profitable. Collaborative robotics and augmented reality (AR) offer new technological options and approaches that integrate with existing artisan techniques. Can these technologies provide productive and practical assistance to skilled handcraft artisans? This research presents an original approach to robotic fabrication using AR robot control, and artisan techniques to fabricate an original design. The method includes documenting artisan ethnography, designing a custom cutting end effector and an AR control interface, utilising the capabilities of the robot fabricating system. The research outcome is a hybrid digital craft approach to collaborative robotic patternmaking and handcrafting. The fabrication system reduced the amount of time and physical exertion of designing and cutting out patterns from various materials. This demonstrates that robotic tools can expand rather than replace the capability of existing artisan occupations, helping to strengthen resilience in local industries and promote new innovations.
keywords Collaborative robotic fabrication, hybrid digital craft, artisan manufacturing, augmented reality, SDG9.
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id caadria2022_424
id caadria2022_424
authors May, Kieran, Walsh, James, Smith, Ross, Gu, Ning and Thomas, Bruce
year 2022
title UnityRev - Bridging the gap between BIM Authoring platforms and Game Engines by creating a Real-Time Bi-directional Exchange of BIM data
doi https://doi.org/10.52842/conf.caadria.2022.2.527
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 527-536
summary We present UnityRev: An open-source software package that enables a workflow designed to facilitate a real-time bi-directional and synchronous exchange of Building Information Modelling (BIM) data, by creating a direct link between a BIM authoring platform (i.e. Autodesk Revit) and a game engine (i.e. Unity 3D). Although previous works have explored the integration of BIM with game engines, the currently available tools are limited to a non-synchronous or uni-directional exchange of BIM data, and they do not address specific design issues required to make a BIM authoring platform and game engine compatible (i.e. parametric modelling). This paper describes our software which consists of a compact overview of the system, including design decisions, implementation details, and system capabilities. Two example applications are presented as concept demonstrators to -10795864108000showcase practical collaborative use-case scenarios between BIM authoring platforms and game engines which were not previously achievable without a real-time bi-directional workflow. This work will expand future Computer Aided Architectural Design (CAAD) research, and more specifically, Virtual Reality (VR)/Augmented Reality (AR) based BIM development and integration, by providing new possibilities and bridging the gap between BIM authoring platforms and game engines. The application of the system as demonstrated in the paper for real-time lighting performance simulation contributes to achieving the UN Sustainable Development Goal 11: Sustainable Cities and Communities.
keywords building information modelling, game engines, revit, unity, virtual reality, augmented reality, lighting performance simulation, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_505
id caadria2022_505
authors Nanasca, James and Beebe, Aaron G.
year 2022
title Dynamic Projection
doi https://doi.org/10.52842/conf.caadria.2022.1.039
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 39-48
summary Rarely are technologies of projection mapping (PM) and mixed reality (MR) used together with an architectural agenda. Dynamic Projection imagines the confluence of accessible PM and MR technologies and asks "How might we leverage the strengths of both technologies while obviating their weaknesses?‚ And then "How might this technology be of use in making architecture from within the Climate Movement?‚ First, we will examine the dormant potential of Projected MR by augmenting a physical model in an exhibition setting. The exhibition set-up deploys Unity and Vuforia to generate MR, and Mad Mapper to generate a projection mapped background space. Using this set-up reveals strengths in both technologies, which we can evaluate with a Cybernetically Enhanced Mixed Reality Framework. We can leverage this Projected MR as a suite of tools to make architecture a more active participant in the Climate Movement: for example, by augmenting buildings with statistics that could help reduce energy consumption or through the augmentation of the construction process, helping facilitate waste reduction through efficient construction. Our initial research is being expanded through development of a more versatile Projected MR platform with Dynamic Projection 02, in which we are utilizing better MR tools, more responsive PM tools, and an industrial robot to simulate various dynamic feedback systems. This expanded research design speculates on a 3-part exhibition that can respond with low latency via Projected MR controls during a public and private interactive experience.
keywords Projection Mapping, Augmented Reality, Projected Augmented Reality, Cybernetics, Mixed Reality, Responsible Consumption and Production, Climate Action, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_30
id sigradi2022_30
authors Song, Yang; Koeck, Richard; Agkathidis, Asterios
year 2022
title Augmented Bricklayer: an augmented human-robot collaboration method for the robotic assembly of masonry structures
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 713–724
summary The Augmented Bricklayer research project proposes a new augmented human-robot collaboration method for the robotic assembly of masonry structures. It aims to resolve the conventional limitations of the robotic bricklaying process by incorporating object recognition and Augmented Reality (AR) technologies. Towards this aim, we present a human-robot collaboration method consisting of two phases: a) the object recognition phase, in which bricks are recognized by a point cloud scanning sensor and analyzed by our calibration system as a feeding object for the robotic gripper to pick; b) the augmented human-robot collaboration phase, in which the masonry adhesive is being applied manually assisted by AR holographic guidance and gets assembled by an AR-assisted robotic operation method. The validation of our method is achieved with the robotic assembly of two real-scale building elements, a masonry column and a wall. Our findings highlight a more flexible, efficient, and convenient AR-assisted human-robot collaboration bricklaying method capable of dealing with complex on-site construction requirements.
keywords Mixed Realities (Augmented Reality), Object Recognition, Human-robot Collaboration, Robotic Assembly, Masonry Structures
series SIGraDi
email
last changed 2023/05/16 16:56

_id ecaade2022_73
id ecaade2022_73
authors Varinlioglu, Guzden, Oguz, Kaya, Turkmen, Doruk, Ercan, Irem and Turhan, Gozde Damla
year 2022
title Work of Art in the Age of Metaverse - Exploring digital art through augmented reality
doi https://doi.org/10.52842/conf.ecaade.2022.2.447
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 447–456
summary The creation of artworks in the metaverse as unique files that exist on a blockchain world of the non-fungible tokens (NFTs) have revitalized discussions over the uniqueness of a work of art. Similar to the art world market in Second Life, this has presented a novel way to collect imported or natively digital art. This raises the following questions: What are the processes that artwork undergoes in the web 3.0 or metaverse? What constitutes the reproduction/recreation of a work of art? Which tools can be exploited to create more content for this universe? How does this new approach affect ownership, scarcity and authenticity? Unlike art productions that find a place in museums or galleries, Daragaç Art Collective independently uses the streets both as their location, and as their canvas. This creates the need to store the artworks as fully as possible in any form available. With this aim, a team of architects, designers and software engineers designed, implemented and tested a mobile application to represent and recreate the experience of the artworks in the digital environment. The artworks of independent artists were collected virtually and compiled in a relational database over the years, and are displayed in their geographical coordinates, and represented in the 3D world. After discussion on how to represent the artworks, it was decided that some only exist in videos and photographs, therefore, we decided to use the archaeology of digital data and present them in 3D space, to ensure their continued existence once they had been performed or exhibited. Illustrated by the case of our augmented application, this paper discusses the reproduction of ownership and scarcity of artworks in terms of preserving a cultural heritage in the metaverse.
keywords Augmented Reality, Artwork, Metaverse, Digital Heritage, Photogrammetric Modeling, Scarcity
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_453
id caadria2022_453
authors Yang, Xiliu, Amtsberg, Felix, Skoury, Lior, Wagner, Hans Jakob and Menges, Achim
year 2022
title Vizor, Facilitating Cyber-physical Workflows in Prefabrication through Augmented Reality
doi https://doi.org/10.52842/conf.caadria.2022.2.141
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 141-150
summary This research presents Vizor, a software framework to facilitate Human Robot Collaboration (HRC) in fabrication using Augmented Reality (AR), specifically within the environment of high Level of Automation (LoA) prefabrication for the AEC industry. The framework supports skill set extensions of fabrication setups via the integration of human craft and automation through AR and improves the accessibility and adaptability of these fabrication setups. It features a Grasshopper plugin for low-barrier-to-entry prototyping and an integrated HoloLens application for operation. The tool is demonstrated through three use case examples and validated in a proof-of-concept case study involving a craftsperson and a 14-Axis robotic setup, which demonstrates a novel interactive task-sharing process. Vizor opens new opportunities to extend robotic prefabrication with craftspeople who are skilled yet untrained in robotic control and provides greater access to tools for prototyping HRC workflows.
keywords augmented reality, human robot collaboration, cyber-physical fabrication, SDG 8, SDG 9, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_193
id sigradi2022_193
authors Kunic, Anja; Naboni, Roberto
year 2022
title Collaborative design and construction of reconfigurable wood structures in a Mixed Reality environment
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 651–662
summary Mixed Reality tools offer new possibilities for cyber-physical design and construction and promote novel collaboration protocols. This work tackles a multi-user open-end design and construction of reconfigurable timber structures in Mixed Reality by introducing a computational workflow, physical setup and custom-designed interface. The developed procedures are demonstrated in the design and making of a real-scale architectural mock-up based on a discrete construction kit that allows for numerous assembly combinations. The results show that such a construction system that is characterized by rich design and assembly data is processed faster and with fewer mistakes by the builders using Mixed Reality. This opens the possibility to execute, change and update the construction directly in the physical environment in real-time. Moreover, the projected holographic analytics and construction data allowed for more structured decision-making and understanding of the impacts that each building action had.
keywords Mixed Realities, Reconfigurable Timber Construction, Collaborative Design, Collaborative Assembly, Wood Architecture Automation
series SIGraDi
email
last changed 2023/05/16 16:56

_id caadria2022_275
id caadria2022_275
authors Sukegawa, Chika, Khajehee, Arastoo, Kawakami, Takuma, Someya, Syunsuke, Hirano, Yuji, Shibuya, Masako, Ito, Koki, Watanabe, Yoshiaki, Wang, Qiang, Inaba, Tooru, Lee, Alric, Hotta, Kensuke, Miyaguchi, Mikita and Ikeda, Yasushi
year 2022
title Smart Hand for Digital Twin Timber Work -The interactive procedural scanning by industrial arm robot
doi https://doi.org/10.52842/conf.caadria.2022.2.131
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 131-140
summary This paper describes a 3D automated scanning method for building materials, namely "The Interactive Procedural Scanning‚, in a collaborative environment composed of a human worker and a CNC robot. This procedure aims to translate the observation skill of an experienced carpenter into an intelligent robotic system. The system frames its function on the first stage of a traditional timber examination process, called ‚Kidori‚, in which observations and findings are marked on the timber surface to provide hints for the subsequent cutting process. This paper aims to recreate the procedures using an industrial robotic arm, computer vision, and a human worker. A digital twin model of the timber is created with a depth camera serving as a base map to exchange information and receive instruction from the human worker. The margin of a discrepancy between the original processing location and the location of the actual end effector, where the tools are, is minimised in this system.
keywords 3D scanning, computer vision, traditional technique, phycology, machine learning, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_013
id ascaad2022_013
authors Al-Suwaidi, Mohammed; Agkathidis, Asterios; Haidar, Adonis; Lombardi, Davide
year 2022
title Application of Immersive Technologies in the Early Design Stage in Architecture Education: A Systematic Review
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 313-330
summary This paper reviews existing research on the use of immersive technologies, Virtual Reality in particular, in various stages of the architectural design process. Nine research papers were systematically reviewed and analyzed. They were filtered down by using the keywords: ‘Virtual/Augmented Reality, Architectural Education, Gravity Sketch, Unity and Virtual Environments’ from two main databases that focus on digital and computer-aided design research: Cumulative Index about publications in Computer Aided Architectural Design (CuminCAD) and Elsevier's abstract and citation database (Scopus). The selection of papers was filtered down based on relevant approaches which investigate architectural design, creative thinking and teaching methodology using immersive technologies. Another criterion applied to the filtering process of the research papers is the exploration and integration process of new tools and overlapping external software to aid the existing workflow of the user. Our findings explore the evolution of immersive tools to highlight the advantages and disadvantages of virtual reality-based software and hardware, as a creative development tool in the field of education and practice. This paper also proposes a novel teaching methodology that incorporates immersive technologies in the early design phase of architectural education.
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaade2022_251
id ecaade2022_251
authors Awan, Abeeha, Lombardi, Davide, Ruffino, Paolo and Agkathidis, Asterios
year 2022
title Efficacy of Gamification on Introductory Architectural Education: a literature review
doi https://doi.org/10.52842/conf.ecaade.2022.2.553
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 553–564
summary Due to their recent popularity and success in fields such as engineering and business, gamification and by extension game design principles demonstrate the ability to teach complex, multi-disciplinary skills in an engaging, entertaining, and effective way. Architectural education especially introductory architectural education is a foundational and fundamental part of a budding architecture student’s career and oftentimes requires the understanding of dynamic systems, spatial reasoning, and experiential learning. The paper posits that gamification and game design principles can utilize certain components such as augmented reality, narrative design, and fun in order to create tools, gamify existing curriculum, and increase retention, engagement, and mastery of the difficult high-tech skillsets required of introductory architects. The paper focuses on reviewing and systematically analyzing research on gamification in education. In particular, it focuses on systematically reviewing and analyzing data from multiple relevant case studies chosen based on the application of technology such as augmented reality, the integration of game design, and the feasibility of gamification in educational environments. This data is examined based on feasibility, accessibility, and effects on information retention and the findings are outlined in a comparative table of methods, tools, and technologies organized based on their suitability. Ultimately, the paper aims to establish a framework for gamifying introductory modules in architectural education and hopes to create a future architectural augmented reality game meant to utilize gamification to help new architectural students.
keywords Gamification, Game Design, Architectural Education, Educational Games, Retention, Learning
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_043
id ascaad2022_043
authors Awan, Abeeha; Prokop, Simon; Vele, Jiri; Dounas, Theodor; Lombardi, Davide; Agkathidis, Asterios; Kurilla, Lukas
year 2022
title Qualitative Knowledge Graph for the Evaluation of Metaverse(s) - Is the Metaverse Hype or a Promising New Field for Architects?
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 99-116
summary With the advancement of augmented and virtual reality technologies both in scale as well as accessibility, the Metaverse (Stephenson, 1992, Hughes, 2022) has emerged as a new digital space with potential for the application of architectural creativity and design. With blockchain integration, the concept of the Metaverse shows promise in creating a “decentralised” space for design and creativity with rewards for its participants. As a platform that incorporates these technological components, does the Metaverse have utility for architectural design? Is there something truly novel in what the Metaverse brings to architectural computing, and architectural design? The paper constructs a qualitative knowledge graph that can be used for the evaluation of various kinds of Metaverses in and for architectural design. We use Design Science Research methods to develop the knowledge graph and its evaluative capacity, stemming from our experience with two Metaverses, Decentraland and Cryptovoxels. The paper concludes with a discussion of knowledge and practice gaps that are evident, framing the opportunities that architects might have in the future in terms of developing Metaverse(s).
series ASCAAD
email
last changed 2024/02/16 13:24

_id ecaade2022_360
id ecaade2022_360
authors Azambuja Varela, Pedro, Lacroix, Igor, Güzelci, Orkan Zeynel and Sousa, José Pedro
year 2022
title Democratizing Stereotomic Construction through AR Technologies - A reusable mold methodology to the production of customized voussoirs using HoloLens
doi https://doi.org/10.52842/conf.ecaade.2022.1.225
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 225–232
summary Mass customizing of building components allows new conditions to explore aesthetic and sustainability in architecture. However, such possibilities tend to require the use of expensive and heavy digital fabrication machinery, which is seldomly available in most regions on the planet. In this context, this paper presents a research in progress that explores Augmented Reality (AR) to support craft production of customized stereotomic components. As a portable technology, the work examines the potential of AR to materialize design solutions that are geometrically complex and variable. Considering the current research on augmented fabrication processes, this work contributes to producing variable building components for stereotomic construction with a focus on earth-based materials. Extending the findings of a recently completed PhD thesis, the work replaces the use of a robot with the HoloLens glasses and Fologram application to produce low- cost and reusable molds. This augmented fabrication setup allows the human control of the production of variable molds, ready for casting and assembly of stereotomic components. This work addresses several of the NEB and UN SDGs goals.
keywords Stereotomy, Augmented Reality, Augmented Fabrication, Customized Production, New European Bauhuas
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2022_258
id caadria2022_258
authors Chen, Hao, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2022
title Developing an Augmented Reality System with Real-Time Reflection for Landscape Design Visualization, Using Real-Time Ray Tracing Technique
doi https://doi.org/10.52842/conf.caadria.2022.1.089
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 89-98
summary In landscape design, visualization of a new design on the site with clients can greatly improve communication efficiency and reduce communication costs. The use of augmented reality (AR) allows the projection of design models into the real environment, but the relationship between the models and the physical environment, such as reflections, which are often thoughtfully considered in waterfront landscape design, is difficult to express in existing AR systems. The aim of this study is to accurately render and express the reflections of virtual models in the physical environment in an AR system. Different from traditional rasterized rendering, this study used physically correct ray-tracing algorithms for reflection rendering calculations. Using a smartphone and a computer, we first constructed a basic AR system using a game engine and then performed ray-tracing computations using a shader kernel in the game engine. Finally, we combined the rendering results of reflections with the video stream from a smartphone camera to achieve the reflection effect of a virtual model in a physical environment. Both designers and clients could review the design with a realistic reflection on an actual water surface and discuss design decisions through this system.
keywords Augmented reality (AR), reflection, landscape design, interactive visualization, real-time rendering, planar reflection, real-time ray tracing, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2022_296
id caadria2022_296
authors Jahn, Gwyllim, Newnham, Cameron and van den Berg, Nick
year 2022
title Augmented Reality for Construction From Steam-Bent Timber
doi https://doi.org/10.52842/conf.caadria.2022.2.191
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 191-200
summary Digital models viewed in augmented reality can serve as guides to form and assemble parts during construction and reduce the need to build temporary formwork or sub structures. However, static digital models are often inadequate for describing the behaviour of material that is dynamically formed over time, leading to breakages and difficulty following augmented reality guides during assembly. To address this issue, we propose a method for fast and approximate simulation of material behaviour using a goal-based physics solver, enabling the design and fabrication of steam bent timber parts using an adaptable system of sparse formwork. Through the design and construction of a pavilion from steam bent timber we demonstrate that approximate simulation of material behaviour is adequate for wide tolerance construction by hand and eye in augmented reality, avoiding part breakages and accumulative error.
keywords Augmented Reality, Digital Fabrication, Generative Design, Material Simulation, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 27HOMELOGIN (you are user _anon_576451 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002