CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 577

_id ecaade2022_275
id ecaade2022_275
authors Gan, Amelia Wen Jiun, Guida, George, Kim, Dongyun, Shah, Devashree, Youn, Hyejun and Seibold, Zach
year 2022
title Modulo Continuo - 5-axis ceramic additive manufacturing applications for evaporative cooling facades modules
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 47–55
doi https://doi.org/10.52842/conf.ecaade.2022.1.047
summary Recent developments in industrial robotics present an increasing degree of control in additive manufacturing, enabling customization of architectural building components at the scale of the individual unit. Combining the affordances of a 6-axis robotic arm, paste- based extrusion, and terracotta clay, Modulo Continuo presents methods for part-customization of evaporative cooling facade modules. The design of the facade modules is developed firstly at the scale of the tectonic unit - as a self-supporting, interlocking modular system of curved modules with an embedded water reservoir for evaporative cooling. Second, this is developed at the scale of the toolpath - in which the density of the infill geometry in the modules is calibrated based on principles of evaporative cooling. This research presents aesthetic and performative opportunities through an exploration of infill patterning and density of modules based on evaporative cooling requirements. To produce each curved module through additive manufacturing, curved CNC milled substrates are used to support the geometry while accommodating clay shrinkage. Furthermore, this paper presents novel digital workflows for the customization of a modular façade system and the generation of variable toolpaths for infill patterns. By developing additive manufacturing methodologies for part- customization, the research presents future opportunities for the digital fabrication of ceramic construction elements.
keywords Additive Manufacturing, Digital Fabrication, Evaporative Cooling, Ceramics
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_271
id sigradi2022_271
authors Dong, Siyu; Yan, Jingjing; Yang, Shunyi; Cui, Xiangguo
year 2022
title Light Transmittance Ceramic Design-Computation with Robotics
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 515–526
summary Building envelope design incorporates a range of light-related analyses, often providing an essential feedback loop for shaping an envelope’s performance, geometry, or components. This is true for solar radiation studies of envelopes, calculated irrespective of building material or assembly. Extending our light-related analysis to include diffuse lighting effects on a building interior presents an opportunity to explore the translucency, porosity, and forms of materials. Glazed architectural ceramic components fabricated using adaptive robotic manufacturing provide an opportunity to exploit material dynamics within the design and alleviate fabrication waste from molds, ultimately accelerating the production manufacturing system. In addition to analyzing the solar radiation on the building facade design, lighting effects can be engaged in profoundly different ways depending on the degree of design-production agency. The production process can be extended beyond automatic routines using robotic fabrication with levels of autonomous involvement that allow for alternative form expressions of the dynamic clay material. In addition to negotiating several design criteria, the design research will develop an aesthetic character originating from customized clay materials and robotic manufacturing processes for lighting transmittance architectural ceramics.
keywords Digital Fabrication, Light Transmittance, Data-Driven Fabrication, Computer Vision
series SIGraDi
email
last changed 2023/05/16 16:56

_id ijac202220401
id ijac202220401
authors Gosch, Lukas; Julian Jauk; Hana Vašatko; Elizabeta Šamec; Matteo Raffaelli; Stefan Rutzinger;Milena Stavric
year 2022
title Fabricating lightweight ceramics by spraying clay on knitted structures
source International Journal of Architectural Computing 2022, Vol. 20 - no. 4, pp. 693–706
summary This research was carried out to develop a novel composite material consisting of a thread reinforcement and a clay matrix, as well as to develop a method of shaping this material into hollow spatial structures. Ceramic elements in the building industry are currently created by applying extruding, pressing and casting methods. The approach of spraying clay onto predefined knitted meshes increases the usability of digitally fabricated lightweight ceramic elements, while eliminating the need for scaffolding. In this approach, multiple layers of a fluid clay mass are sprayed onto the tensioned mesh using an industrial, six-axis robotic arm. This allows the precise application of the material and results in varying material thicknesses. Due to the complementary qualities of clay which absorbs compressive forces and threads which absorb tensile forces, lightweight structures can be created. The research involved experimenting with clay mixtures, several thread types, knitting methods and spraying techniques, as well as fabricating a 1:1 lightweight module as an architectural prototype.
keywords ceramics, knitted threads, digital fabrication, mesh formwork, six-axis robotic arm, spraying
series journal
last changed 2024/04/17 14:30

_id ecaade2022_218
id ecaade2022_218
authors Bank, Mathias, Sandor, Viktoria, Schinegger, Kristina and Rutzinger, Stefan
year 2022
title Learning Spatiality - A GAN method for designing architectural models through labelled sections
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 611–619
doi https://doi.org/10.52842/conf.ecaade.2022.2.611
summary Digital design processes are increasingly being explored through the use of 2D generative adversarial networks (GAN), due to their capability for assembling latent spaces from existing data. These infinite spaces of synthetic data have the potential to enhance architectural design processes by mapping adjacencies across multidimensional properties, giving new impulses for design. The paper outlines a teaching method that applies 2D GANs to explore spatial characteristics with architectural students based on a training data set of 3D models of material-labelled houses. To introduce a common interface between human and neural networks, the method uses vertical slices through the models as the primary medium for communication. The approach is tested in the framework of a design course.
keywords AI, Architectural Design, Materiality, GAN, 3D, Form Finding
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_170
id ecaade2022_170
authors Colonneau, Téva, Chenafi, Sabrina and Mastrorilli, Antonella
year 2022
title Digital Intervention Methodologies and Robotic Manufacturing for the Conservation and the Restoration of 20th-Century Concrete Architecture Damaged by Material Loss
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 197–206
doi https://doi.org/10.52842/conf.ecaade.2022.2.197
summary This article deals with the characterisation of robotic manufacturing systems and digital interventions adapted for the conservation and the restoration of 20th-century concrete buildings. By exploiting the potential for analysis and implementation of robotic manufacturing technologies used in the field of heritage science, two associated non- invasive, non-destructive and integrated intervention solutions are presented here, using two research approaches. Through the use of digital recording tools, digital modelling / simulation and additive manufacturing techniques, the first approach develops a direct repair process by adding material with the help of aerial robots. The second focuses on printing recyclable plastic mouldings in order to reproduce partially degraded or completely destroyed architectural details. The results of these two diverse and complementary researches, as well as their experimental approaches applied to conservation and restoration practices, aim to test the proposed robotic manufacturing- based method, regarding the criteria of transferability and methodological feasibility.
keywords 20th-Century Concrete Built Heritage, Conservation and Restoration Practices, Digital Modelling, Robotic Manufacturing, Democratisation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_171
id ecaade2022_171
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2022
title Propositions for Enabling Participation in Performance-Driven Design
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 421–430
doi https://doi.org/10.52842/conf.ecaade.2022.1.421
summary In Performance-Driven Design, it is challenging for different stakeholders such as the end-users to participate in the co-designing process. Performance-driven design requires complex algorithmic calculations, simulations, and optimizations. These computational functionalities enabled for this design process lack of transparency and can be sometimes complicated to understand. Therefore, the current applications of Performance-Driven Design contradict the participatory design where social interactions are considered as important steps to produce desirable and accepted design outcomes. In this context, the main aim of this study reported in this paper based on a 4-years PhD thesis at Luxembourg Institute of Science and Technology and KU Leuven, is to address research methods suitable for enabling higher levels of participation in Performance-Driven Design and thus to provide recommendations and guidelines.
keywords Performance-Driven Design, Participation Design Process, Architectural Design, Performance and Requirements Modeling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_368
id ecaade2022_368
authors Das, Avishek, Brunsgaard, Camilla and Madsen, Claus Brondgaard
year 2022
title Understanding the AR-VR Based Architectural Design Workflow among Selected Danish Architecture Practices
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 381–388
doi https://doi.org/10.52842/conf.ecaade.2022.1.381
summary Virtual reality (VR) and augmented reality (AR) have been proposed to be additional architectural design mediums for at least 25 years (Dagit, 1993). Despite rapid technical and technological development, it has not been adopted into architectural design practices as compared to academia and research. Surveys from the American Institute of Architects (AIA) and Royal Institutes of British Architects (RIBA) demonstrate the state of architectural practices; 72% of architects and 65% of architects respectively are not using any kind of virtual, augmented, or mixed reality in their practices(RIBA and Microsoft, 2018; Hampson, 2020). In this paper, the authors investigate the state of practices, issues, challenges, and opportunities of the utilization of virtual, augmented, and mixed realities in six architectural practices in the Danish context. Three of the practices are large architectural practices, one medium-sized practice specializing in institutional, healthcare and cultural architecture, and one firm designing private family houses, kindergartens, daycares and places for people with disability and, one experimental design studio. All these practices have used VR/AR in their projects to various degrees. In recent years Danish architectural practices have been involved in various VR/AR-based exhibitions, demonstrations, and tool developments to promote the usage of the same in design practice. Through a set of qualitative interviews with personnel from key architectural practices, the authors would like to demonstrate the present state of practices. The investigation explores the usage of VR and AR in Danish architecture practices by identifying challenges and opportunities regarding skill levels, architectural typology, use cases, toolchains, and workflow and shows similarities and differences between traditional and VR-based design processes. The main findings show how VR/AR-based visualization helps architects to perceive spatiality and also ushers creativity through immersion and overlays.
keywords Virtual Reality, Augmented Reality, Architectural Design Practice, Denmark
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_89
id ecaade2022_89
authors Di Mascio, Danilo
year 2022
title An Untold Story of a Creative Community of Level Designers - Designing and sharing imaginary navigable virtual environments with game technologies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 481–490
doi https://doi.org/10.52842/conf.ecaade.2022.1.481
summary The following paper describes and critically reflects on the remarkable production of a creative community of level designers who designed and published 3D game levels (3D real-time virtual navigable environments) during the end of the 1990s and the first decade of the 2000s. During those years, many level designers from several countries created an impressive number and variety of custom levels (user-created content), characterised by imaginary architectures and places informed by narrative elements. This international community was supported by various websites that are no longer available. However, an open-source website, Unreal Archive, constitutes “an initiative to preserve and maintain availability of the rich and vast history of user-created content for the Unreal and Unreal Tournament series of games” (Unreal Archive, 2022). The number of levels available on Unreal Archive exceeds 34,000. For the first time in the architectural research community, this paper aims to shed light on the creative production of that period, and to identify and critically reflect on aspects that could have cultural, creative and educational value for architecture and architectural education. The author directly experienced the achievements of that historical period, and created and published a number of virtual environments using early versions of the Unreal Editor/Engine and 3D modelling software. This research is part of a larger project that investigates transdisciplinary expressions of spaces and architectures, as well as concepts, methodologies and tools in the video games field that can inspire or be transferred to the architecture field.
keywords Virtual Environments, Imaginary Architectures and Places, Narrative, 3D Navigable Environments, Digital Heritage, User-Created Content, Unreal Editor, Unreal Series, Video Games, Level Design, Environmnetal Storytelling
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_407
id ecaade2022_407
authors Dissaux, Thomas and Jancart, Sylvie
year 2022
title Architecture Students' Search Behavior in Parametric Design
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 171–181
doi https://doi.org/10.52842/conf.ecaade.2022.1.171
summary Over the last decade, architecture has witnessed a growing popularity for new computational tools such as parametric design environments (PDEs). Given their rapid evolution and development, expertise tends to become increasingly transient, and architects find themselves in a situation where they must constantly re-learn their tools. At the same time, access to information has become increasingly widespread. Self-learners can thus rely on information retrieval systems to address knowledge gaps. However, the inherent tool complexity has given rise to a new kind of knowledge. On the basis of the different types described by Anderson and Krathwohl, the authors have previously shown that conceptual knowledge is essential for teaching parametric design. In contrast, research on interactive information retrieval (IIR) has highlighted that procedural knowledge is preferred in create tasks like design. Consequently, it can be argued that in a self-learning situation, architects might not be adopting best practice in relation to knowledge retrieval, especially when considering the visual scripting nature of certain PDEs. The purpose of this paper is to observe cognitive patterns in knowledge search activities while designing in parametric environments and validate the integration of CLT and IIR for further research. We highlight the types of knowledge and sources architecture graduate students, novices in PDEs, search for during design over multiple sessions and why. The paper reports on three design tasks completed during a computational course that emphasized student's autonomy. A qualitative analysis of interviews reveals epistemic actions to fall prey to procedural information, which is in line with both IIR and CLT research. This research is part of a PhD project studying the impact of knowledge retrieval on architectural design when using PDEs. Eventually, it could raise awareness in education, research, and practice regarding information retrieval in architectural design.
keywords Parametric Design, Interactive Information Retrieval, Cognitive Load, Searching as Learning, Knowledge
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_203
id ecaade2022_203
authors Kim, Frederick Chando and Huang, Jeffrey
year 2022
title Perspectival GAN - Architectural form-making through dimensional transformation
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 341–350
doi https://doi.org/10.52842/conf.ecaade.2022.1.341
summary With the ascendance of Generative Adversarial Networks (GAN), promising prospects have arisen from the abilities of machines to learn and recognize patterns in 2D datasets and generate new results as an inspirational tool in architectural design. Insofar as the majority of ML experiments in architecture are conducted with imagery based on readily available 2D data, architects and designers are faced with the challenge of transforming machine-generated images into 3D. On the other hand, GAN-generated images are found to be able to learn the 3D information out of 2D perspectival images. To facilitate such transformation from 2D and 3D data in the framework of deep learning in architecture, this paper explores making new architectural forms from flat GAN images by employing traditional tools of projective geometry. The experiments draw on Brook Taylor’s 19th- century theorem of inverse projection system for creating architectural form from perspectival information learned from GAN images of Swiss alpine architecture. The research develops a parametric tool that automates the dimensional transformation of 2D images into 3D architectural forms. This research identifies potential synergic interactions between traditional tools and techniques of architects and deep learning algorithms to achieve collective intelligence in designing and representing creative architecture forms between humans and machines.
keywords Machine Learning, GAN, Architectural Form, Perspective Projection, Inverse Perspective, Digital Representation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_324
id ecaade2022_324
authors Lin, Yu-Ting and Hsu, Pei-Hsien
year 2022
title Dynamic Inflatable Structures and Digital Fabrication Process
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 311–320
doi https://doi.org/10.52842/conf.ecaade.2022.1.311
summary Inflatable structures made of flat film materials have an advantage of low cost, lightweight and rapid deployment, but the variation of their forms is relatively limited, and it is a challenge to produce pneumatic deformations. This paper proposes a designing and manufacturing process of inflatable structures which are made of flat film materials and are able to perform dynamic movements. The process includes steps in which a target 3D surface is produced through programmed 2D paths heat-sealed on flat films of different thickness, leading to a structure composed of air chambers. A parametric modelling procedure and associated principles are developed for the relationship between the forms of a flat-film-based inflatable structure and the heat sealing patterns on the film. A system of double-layer air chambers was designed to control the direction of bending movements. In addition, the form variation of a designed inflatable structure can be achieved by a parametric design process described in this paper.
keywords Pneumatic Structural System, Inflatable Structure, Digital Fabrication, Design Tool, Kinetic Structure
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_361
id caadria2022_361
authors Lok, Leslie and Bae, Jiyoon
year 2022
title Timber De-Standardized 2.0 : Mixed Reality Visualizations and User Interface for Processing Irregular Timber
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 121-130
doi https://doi.org/10.52842/conf.caadria.2022.2.121
summary Timber De-Standardized 2.0†is a mixed reality (MR) user interface (UI) that utilizes timber waste produced by manufacturing dimensional lumber, suggesting an expanded notion for "material usability‚ in timber construction. The expanded notion of designing with discarded logs not only requires new tools and technologies for cataloguing, structuring, and fabricating. It also relies on new methods and platforms for the visualization and design of these structures. As a†MR†UI,†Timber De-Standardized†enables professionals and non-professionals alike to seamlessly design with irregular logs and to create viable structural systems using an intuitive†MR†environment. In order to develop a†MR†environment with this level of competency, the research aims to finesse the visualization techniques in the immersive full-scale†3D†environment and to minimize the use of alternative 2D UI(s). The research methodology†focuses on†(1) cataloguing and extracting basic properties of various tree logs, (2)†refining mesh visualization for better user interaction, and†(3)†developing†the†MR†UI to increase user design agency with custom menu lists and operations.†This methodology will extend the usability of†MR†UI protocols to a broader audience while democratizing design and enabling the user as co-creator.
keywords Irregular Tree Logs, Wood Construction, Augmented and Mixed Realities, Mixed Reality User Interface, Co-Creative Design, Digital representation and visualization, SDG 9, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_230
id ecaade2022_230
authors Sauda, Eric, Karduni, Alireza and Radnia, Noushin
year 2022
title Architectural User Interface - Synthesizing augmented reality and architecture
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 351–360
doi https://doi.org/10.52842/conf.ecaade.2022.1.351
summary Space is the natural setting for augmented reality (AR), suggesting the possibility of an architecture interface. The release of advanced AR devices will introduce new interactive, hybrid spaces infused and organized by information. For computer science, AR is agnostic to its spatial setting, but designing AR and architecture together will allow for exploration of a full range of affordances, feedback mechanism and output/display options. We present design research at Mount Zion Archaeological Park in Jerusalem for a museum and park preserving and explaining the site. Huge amounts of data generated during the excavation are connected to the archaeological record across the region and the world. Our team of architectural & computational designers and faculty from architecture, archeology, and computer science engaged the design of tightly coupled AR interactions and architectural spaces. Our design method allowed designers to visualize and understand simultaneously the design of space and information. We generated 12 designs, using them as the basis for a preliminary set of usability heuristics for an Architecture User Interface.
keywords Augmented Reality, Interactive Architecture, Design Methods
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_431
id ecaade2022_431
authors Sieder-Semlitsch, Jakob and Nicholas, Paul
year 2022
title Self-Serveying Multi-Robot System for Remote Deposition Modelling
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 233–240
doi https://doi.org/10.52842/conf.ecaade.2022.1.233
summary The need for increased automation of the AEC sector has been extensively documented within the architectural discipline over recent years. Far beyond economic perspectives, current advances in technology offer an increased and more direct implementation of sustainable materials. Within this research, the potential for the re-use of material with low embodied energy within automated construction will be examined. Herefore, Remote Material Deposition (RDM, firstly described in Dörfler et al., 2014) is utilized as main fabrication method, deploying varying compositions of local building debris, lime mortar, and sand, via a throwing arm. This research explores a method of continuous verification of material deployment and removal of material oversaturation to guarantee accuracy. Herefore, all instances of the robot ecology are in direct communication with one another and the user for verification, adaptation, and information. The proposed framework is examined through experimentation by designing, building, and implementing an inter-communicative network of bespoke semi-autonomous robots with all proposed parts of the system.
keywords Construction Automation, Material Reuse, Onsite Construction, Self Verifying System, Robot Ecology, Additive Manufacturing
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_409
id ecaade2022_409
authors Sviták, Daniel, Tsikoliya, Shota and Vaško, Imro
year 2022
title Multimateriality as a Driver of Additive Robotic Fabrication - Agent system used for toolpath generator
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 151–156
doi https://doi.org/10.52842/conf.ecaade.2022.2.151
summary Designing for robotic 3D printing shows many challenges. This project speculates about the possibilities of material, and specifically multi-materiality, to be a design driver of the printing process. Second driver of the design is a bottom-up process of generating the fabrication data. A generalized agent system can act as a procedural generator of fabrication data, utilizing its digital awareness of data around its path. With this approach a smaller scale fabrication prototype was analysed, prepared for fabrication and robotically printed.
keywords Multimateriality, Robotic Fabrication, Additive Deposition, Particle System, Large-Scale Printing
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_105
id ecaade2022_105
authors Trento, Armando, Fioravanti, Antonio, Kieferle, Joachim and Woessner, Uwe
year 2022
title Bridging Cultural Heritage Ontologies in VR Environment - A framework for querying and reasoning on the Temple of Venus and Rome restoration and documentation
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 177–186
doi https://doi.org/10.52842/conf.ecaade.2022.2.177
summary VR applied to Architectural and Archaeological Heritage has a long history: Digital models in this field are evolving from an aesthetic simulation of reality, or, rather, a representation of the visual perception, to a more complex model: an information aggregation core. The investigation presents a research panel oriented to enhance the digital survey products - point clouds, meshes, 3D models -to be used as an intelligent visual archive assigning structured knowledge contents to artefacts’ geometry. The implemented case regards the Temple of Venus and Rome. Research, in progress, has been developed by the following steps: 1) Subdividing the artefact geometry into sub- regions; 2) Developing the consolidation ontology for a few restoration classes; 3) Assigning (manually) to each artefact subcomponent, namely a mesh sub-region, a “smart label” including a link to its consolidation ontology instance. The aim is to combine the potential of VR visualization with ontology reasoning systems.
keywords VR, Archaeological Heritage, Knowledge-based Design Systems, Restoration Ontologies
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_087
id ascaad2022_087
authors Mallasi, Zaki
year 2022
title A Pixels-Based Design Approach for Parametric Thinking in Patterning Dynamic Facades
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 654-673
summary In today’s Architectural design process, there has been considerable advancements in design computation tools that empowers designer to explore and configure the building façades schemes. However, one could formally argue that some processes are prescribed, lacks automation and are only for the purpose of visualizing the aesthetic design concepts. As a result, these design concept explorations are driven manually to exhibit variations between schemes. To overcome such limitations, the development presented here describes a proactive approach to incorporate parametric design thinking process and Building Information Modeling (BIM). This paper reports on an ongoing development in computational design and its potential application in exploring an interactive façade pattern. The objective is to present the developed approach for exploring façade patterns that responds parametrically to design-performance attractors. Examples of these attractors are solar exposure, interior privacy importance, and aesthetics. It introduces a paradigm-shift in the development of design tools and theory of parameterization in architecture. This work utilizes programming script to manipulate the logic behind placement of faced panels. The placement and sizes for the building facade 3D parametric panels react to variety of Analytical Image Data (AID) as a source for the design-performance data (e.g.: solar exposure, interior privacy importance, and aesthetics). Accordingly, this research developed the PatternGen(c) add-on in Autodesk ® Revit that utilizes a merge (or an overlay) of AID images as a source to dynamically pattern the building façade and generate the facade panels arrangement rules panels on the building exterior. This work concludes by a project case study assessment, that the methodology of applying AID would be an effective dynamic approach to patterning façades. A case-study design project is presented to show the use of the AID pixel-gradient range from Red, Green and Blue as information source value. In light of the general objectives in this study, this work highlights how future designers may shift to a hybrid design process.
series ASCAAD
email
last changed 2024/02/16 13:29

_id ecaade2022_168
id ecaade2022_168
authors Abdulmawla, Abdulmalik, Schneider, Sven, Koenig, Reinhard, Bielik, Martin and Fuchkina, Ekaterina
year 2022
title Parametric Urban Data Structuring and Spatial Query - Advanced data mapping and selection methods for parametric modelling environments
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 277–286
doi https://doi.org/10.52842/conf.ecaade.2022.2.277
summary This paper presents a method for organising urban data inside the CAD environment into a hierarchical structure, which promotes the ease of transferring information between all available urban elements, from streets to buildings passing by the plots and blocks. This is done using parametric methods that map the urban data using the available CAD and GIS records. Finally, the paper presents a couple of example scenarios where such methods are most needed and how much they could facilitate more detailed and complex data to be accessed, compared, and analysed.
keywords Urban Query, Urban Geometry, Spatial Mapping
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_202
id ecaade2022_202
authors Acican, Oyku and Luyten, Laurens
year 2022
title Experiential Learning of Structural Systems - Comparison of design-based and experiment-based pedagogies
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 535–544
doi https://doi.org/10.52842/conf.ecaade.2022.2.535
summary This research aims to compare two experiential learning methods’ effectiveness for (1) a deeper understanding of structural behaviour, and (2) skills to design architectural forms that are structurally informed. A course was planned to investigate the effect of the type and order of the two teaching units: (1) guided experiments on a parametric design model, and (2) parametric design of a tower and custom experiments using Grasshopper and Karamba. Results indicate that the group that started with the experiments learned to ask the relevant questions by experimenting with the appropriate parameters that helped them to find the structural principles and apply them during their design phase. The group that started with the design were lost in the structural concepts and in identifying the meaningful parameters to test for. However, after the experiment was completed, this group could make a knowledge transfer. Acquisition of structures knowledge may require the experience of multiple situations while the application of this knowledge may involve selecting the relevant structural experience with the architectural form-finding process. In the future, a proposed experiential learning method will be compared with an instructive learning approach of structural systems for architecture students.
keywords Structures Education, Experiential Learning, Parametric Structural Analysis, Comparative Pedagogy
series eCAADe
email
last changed 2024/04/22 07:10

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_512649 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002