CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 658

_id caadria2022_55
id caadria2022_55
authors Dritsas, Stylianos, Hoo, Jian Li and Fernandez, Javier
year 2022
title Sustainable Rapid Prototyping with Fungus-Like Adhesive Materials
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 263-272
doi https://doi.org/10.52842/conf.caadria.2022.2.263
summary The purpose of the research work presented in this paper is to develop a sustainable rapid prototyping technology. Fused filament fabrication using synthetic polymers is today the most popular method of rapid prototyping. This has environmental repercussions because the short-lived artifacts produced using rapid prototyping contribute to the problem of plastic waste. Natural biological materials, namely Fungus-Like Adhesive Materials (FLAM) investigated here, offer a sustainable alternative. FLAM are cellulose and chitin composites with renewable sourcing and naturally biodegradable characteristics. The 3D printing process developed for FLAM in the past, targeted large-scale additive manufacturing applications. Here we assess the feasibility of increasing its resolution such that it can be used for rapid prototyping. Challenges and solutions related to material, mechanical and environmental control parameters are presented as well as experimental prototypes aimed at evaluating the proposed process characteristics.
keywords Rapid Prototyping, Sustainable Manufacturing, Digital Fabrication, Robotic Fabrication, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_78
id ecaade2022_78
authors Eroglu, Ruºen and Gül, Leman Figen
year 2022
title Architectural Form Explorations through Generative Adversarial Networks - Predicting the potentials of StyleGAN
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 575–582
doi https://doi.org/10.52842/conf.ecaade.2022.2.575
summary In recent years, generative models have been rapidly transforming into a broad field of research, and artificial intelligence (AI) works are increasing. Since deep learning technologies such as Generative Adversarial Networks (GANs) providing synthesized new images are becoming more accessible, researchers in the design and related fields are very much interested in adapting GANs into practice. Especially, StyleGAN has a strong capability for image learning, reconstruction simulation, and absorbing the pixel characteristics of images in the input dataset. StyleGAN also produces similar imitation outputs and summarizes all the input data into one "average output". The study aims to reveal the potential of these outputs that can be employed as a visual inspiration aid for designers. This article will discuss the outputs of the experiments, findings, and prospects of StyleGAN.
keywords Artificial Intelligence, Machine Learning, Generative Adversarial Networks, StyleGAN
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_270
id ecaade2022_270
authors Akcay Kavakoglu, Aysegul, Almac, Bihter, Eser, Begum and Alacam, Sema
year 2022
title AI Driven Creativity in Early Design Education - A pedagogical approach in the age of Industry 5.0
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 133–142
doi https://doi.org/10.52842/conf.ecaade.2022.1.133
summary This study presents a pedagogical experiment on the integration of AI into the project studio in the early stages of design education. The motivation of the study is to support creative encounters in design studios by promoting student-design representation, student-student, and student-artificial intelligence (AI) interaction. In the scope of this study, a short-term studio project is used as a case study to examine these creative encounters. The experiment covers five stages that enable a recursive analysis-synthesis action. The stages include (i) precedent analysis of a given set of building façades images, (ii) feature extraction, (iii) composing new façade representations through employing previously generated features, (iv) training an AI by the use of styleGAN2-ADA with the outcomes of stage 3, (v) Use of synthetically generated façade images as a design driver. The pedagogical experiment is evaluated through the lenses of novelty, style, surprisingness, and complexity concepts. The challenges and potentials are introduced, as well as elaborations on the future directions of the interplay between AI-oriented making and first-year student making.
keywords Artificial Intelligence, Computational Creativity, Design Education, StyleGAN2-ADA
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_085
id ascaad2022_085
authors Cicek, Selen; Koc, Mustafa; Korukcu, Berfin
year 2022
title Urban Map Generation in Artist's Style using Generative Adversarial Networks (GAN)
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 264-282
summary Artificial Intelligence is a field that is able to learn from existing data to synthesize new ones using deep learning methods. Using Artificial Neural Networks that process big datasets, complex tasks and challenges become easily resolved. As the zeitgeist suggests, it is possible to produce novel outcomes for future projections by applying various machine learning algorithms on the generated data sets. In that context, the focus of this research is exploring the reinterpretation of 21st century urban plans with familiar artist styles using different subtypes of deep-learning-based generative adversarial networks (GAN) algorithms. In order to explore the capabilities of urban map transformation with machine learning approaches, two different GAN algorithms which are cycleGAN and styleGAN have been applied on the two main data sets. First data set, the urban data set, contains 50 cities urban plans in .jpeg format collected according to the diversity of the urban morphologies. Whereas the second data set is composed of four well-known artist’s paintings, that belong to various artistic movements. As a result of training the same data sets with different GAN algorithms and epoch values were compared and evaluated. In this respect, the study not only investigates the reinterpretation of stylistic urban maps and shows the discoverability of new representation techniques, but also offers a comparison of the use of different image to image translation GAN algorithms.
series ASCAAD
email
last changed 2024/02/16 13:29

_id sigradi2022_244
id sigradi2022_244
authors Costa, Frederico; Lima, Fernando
year 2022
title Parametric evaluation of urban compactness in Brazil
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 271–282
summary This paper presents an application of parametric techniques and tools to assess urban compactness in the city of Juiz de Fora, Brazil. A literature review identifies the objective metrics' role in urban design and how they are associated with the urban compactness paradigm. The case study provided results that characterize aspects of the built urban density and the mix of uses in the samples, exploring how parametric resources can help urban design. This research shed some light on how metrics can assist parametric urban design allowing performance measurement in the early design stages. It also highlights potentials, future studies, and challenges, establishing discussions about developing this field of knowledge in Brazil and even in Latin America.
keywords Urban Design, Parametric Urban Design, Computer-aided Urban Design, CityMetrics, Architectural Design
series SIGraDi
email
last changed 2023/05/16 16:55

_id ascaad2022_018
id ascaad2022_018
authors Song, Yang; Agkathidis, Asterios; Koeck, Richard
year 2022
title Augmented Masonry Design: A Design Method using Augmented Reality (AR) for Customized Bricklaying Design Algorithms
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 703-712
summary The Augmented Masonry Design project presents experimental research about developing and applying Augmented Reality (AR) technology for customized design algorithms, exploring a real-time, interactive, and spatial-free design method for the early architectural design stage. We aim to resolve the current 2D-based design limitations and provide architects with a 3D-4D immersive perception in AR for a practical and easy-to-use design method. Furthermore, with reference to the Covid-19 pandemic, we propose that this method could break through site accessibility and constraints by breaking the barriers of physical space. Towards this aim, we apply the Augmented Masonry Design into two prototypes: a) user interface (UI) immersive design, in which interactive inputs will communicate with design algorithms in AR through the inputs from the screen-based UI on mobile devices (e.g., smartphones and tablets); b) intuitive interaction immersive design, in which interactive inputs will be translated to design algorithms directly in AR through hand gestures on head-mounted devices (HMD) (e.g., Microsoft HoloLens). Our Findings highlight the advantages of immersive design in the initial stage of architectural drafts, which gives designers better spatial understanding and design creativity, as well as the challenges arising from the limitations of current AR devices and the lack of real physical simulation in the design system.
series ASCAAD
email
last changed 2024/02/16 13:24

_id acadia22_000
id acadia22_000
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Proceedings]
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 839p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type proceedings
email
last changed 2024/02/06 14:00

_id acadia22_001
id acadia22_001
authors Akbarzadeh, Masoud; Aviv, Dorit; Jamelle, Hina; Stuart-Smith, Robert
year 2022
title ACADIA 2022: Hybrids and Haecceities [Projects Catalog]
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 240p.
summary Hybrids & Haecceities seeks novel approaches to design and research that dissolve binary conditions and inherent hierarchies in order to embrace new modes of practice. Haecceities describe the qualities or properties of objects that define them as unique. Concurrently, Hybrids are entities with characteristics enhanced by the process of combining two or more elements with different properties. In concert, these terms offer a provocation toward more inclusive and specific forms of computational design. Hybrids & Haecceities aligns with a fundamental shift away from abstract generalized models of production toward greater degrees of customization at unprecedented scales, made possible by the Fourth Industrial Revolution. With greater reliance on cyber-physical systems, this shift supports more diverse and considered forms of embodiment and participation in the built environment. Conversely, the design and construction industries have profound global effects with significant political, economic, and environmental impacts. The urgent need to decarbonize buildings, and at the same time, provide equitable infrastructure to communities at risk, places responsibility on the design disciplines to form new collaborations in the effort to address today’s social and ecological crises.
series ACADIA
type projects catalog
email
last changed 2024/02/06 14:00

_id ecaade2022_218
id ecaade2022_218
authors Bank, Mathias, Sandor, Viktoria, Schinegger, Kristina and Rutzinger, Stefan
year 2022
title Learning Spatiality - A GAN method for designing architectural models through labelled sections
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 611–619
doi https://doi.org/10.52842/conf.ecaade.2022.2.611
summary Digital design processes are increasingly being explored through the use of 2D generative adversarial networks (GAN), due to their capability for assembling latent spaces from existing data. These infinite spaces of synthetic data have the potential to enhance architectural design processes by mapping adjacencies across multidimensional properties, giving new impulses for design. The paper outlines a teaching method that applies 2D GANs to explore spatial characteristics with architectural students based on a training data set of 3D models of material-labelled houses. To introduce a common interface between human and neural networks, the method uses vertical slices through the models as the primary medium for communication. The approach is tested in the framework of a design course.
keywords AI, Architectural Design, Materiality, GAN, 3D, Form Finding
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_169
id ecaade2022_169
authors Chen, Ting-Chia, Tsai, Tsung-Han, Huang, Ching-Wen and Wang, Shih-Yuan
year 2022
title Compliant Mechanism Moulding via NiChrome Wire Sintering Method
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 281–290
doi https://doi.org/10.52842/conf.ecaade.2022.1.281
summary This research proposed a unique process for the rapid manufacturing of large-scale compliant mechanism components. Using the characteristics of the NiChrome wire sintering method, it aims to rapidly fabricate a large-scale compliant mechanism model at low cost. NiChrome wire sintering is a method in which NiChrome wire is wound into a target pattern and then placed in a hot-melt material (TPU powder) to be energized and moulded. The low cost, high degree of freedom and one-piece characteristic of this new method bring new possibilities for the manufacturing process of compliant mechanism components. This research applies a new fabrication method to reduce the production cost and manufacturing difficulty of large kinetic installations. In benefitting from the non-mechanical wear characteristics of compliant mechanisms, the service life of manufactured installations can be greatly prolonged as well. The new fabrication method demonstrates an efficient way to produce a large scale of kinetic structure and provides a toolkit for designers.
keywords Nichrome Wire Sintering, Rapid Prototyping, Elastic Material, Digital Fabrication, Compliant Mechanism
series eCAADe
email
last changed 2024/04/22 07:10

_id cdrf2022_3
id cdrf2022_3
authors Deli Liu and Keqi Wang
year 2022
title Spatial Analysis of Villages in Jilin Province Based on Space Syntax and Machine Learning
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_1
summary The development of machine learning technology gives architects and urban planners a new tool that can be used for research and design. The topic of this paper is to analyze the rural space of Jilin Province with the machine learning algorithms and space syntax theory, and to obtain the inherent formation and development laws of rural spatial forms, which can be used as a reference and evaluation system for subsequent rural development, and also can emphasize the locality and continuity of rural development. First, based on geographic information data, researching the connection between the distribution of villages and geographic data at a macro level and to classify them. Then, from each category, selecting one township and use all villages in its area as samples for the more specific study. Spatial features of individual village are extracted based on space syntax theory, and representative spatial features which can as feature values for cluster analysis are selected through comparative analysis. Then classify villages from high-dimensional data and explore their type characteristics. Finally, we hope the result of this study can help provide useful theoretical references for rural construction and nature conservation in the future.
series cdrf
email
last changed 2024/05/29 14:02

_id caadria2022_427
id caadria2022_427
authors Ding, Xinyue, Guo, Xiangmin, Lo, Tian Tian and Wang, Ke
year 2022
title The Spatial Environment Affects Human Emotion Perception-Using Physiological Signal Modes
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 425-434
doi https://doi.org/10.52842/conf.caadria.2022.2.425
summary In the past, spatial design was mainly from the perspective of designers. With the increasing demand for quality spaces, contemporary architecture has gradually shifted from focusing on form creation to human well-being, once again advocating the concept of "human-centered" spatial design. Exploring how the spatial environment affects human emotions and health is conducive to quantifying the emotional perception characteristics of space and promoting the improvement of human quality of life and sustainable survival. At the same time, the development of contemporary technology and neuroscience has promoted the study of the impact of spatial environment on human emotion perception. This paper summarizes the research on the impact of the spatial environment on human emotion perception in recent years. First, 28 relevant studies were screened using the PRISMA framework. Then a set of research processes applicable to this study is proposed. Next, the physiological signals currently used to study the effects of the spatial environment on human emotions are summarized and analyzed, including electroencephalography (EEG), skin response (GSR), pulse (PR), and four other signals. The architectural features studied in the related literature are mainly building structural features, building spatial geometric features, and building spatial functional attributes. The study of urban space is divided into different parts, such as urban environment characteristics and urban wayfinding behavior. Finally, we point out the shortcomings and perspectives of studies related to the influence of spatial environment on human emotion perception.
keywords Architectural space environment, urban space, human emotional feelings, Physiological signals, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2023_219
id sigradi2023_219
authors Fiuza, Rebeca, Cardoso, Daniel, Moreira, Eugenio, Colares, Teresa, Freitas, Vitória and Paiva, Ricardo
year 2023
title Correlations between urban and demographic data and COVID-19 data: a case study in Fortaleza, Brazil
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1667–1678
summary COVID-19 was a sanitary crisis of international impact. However, its effects weren’t experienced equally. In Fortaleza, epidemiological reports (2021;2022) point to different infection patterns between high Human Development Index (HDI) and low HDI neighborhoods, which surfaced the hypothesis that certain territories’ characteristics could correlate to COVID-19 data. This article describes a phase of a three-phase research, whose objective is to identify correlations between urban and demographic (UD) data to COVID-19 data. To this, a literature review was done to select seven UD variables and four COVID-19 ones, then, Spearman’s correlation was applied in four pandemic time frames (TF). Results show that literacy rates, monthly income and energy have either low or moderate positive correlations with contamination rates in most TF. However, they’ve shown low or moderate correlations with lethality rates in three TF. Population density showed low positive correlations to either lethality rates or total number of deaths in three TF.
keywords COVID-19, Urban Data, Demographic Data, Spearman's Coefficient Correlation, Public Health
series SIGraDi
email
last changed 2024/03/08 14:09

_id cdrf2022_25
id cdrf2022_25
authors Hao Zhang, Yuetao Wang, Yuhan Tan, and Jilong Zhao
year 2022
title Parametric Skin Design Method Based on Plane Crystallographic Group Operation Principle
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_3
summary Under the dual constraints of industrialization and digitalization, the building skin and structure are further integrated to form standardized units to meet the requirements of architectural performance, industrial prefabrication and “complexity” aesthetic characteristics. The complex and diverse forms of today's building skin hide profound mathematical logic relations and operation rules of form generation. Crystallographic group with regular symmetry and the operation principles reflected by it is one of the most important rules and methods of form and pattern processing in skin design. The study of the mural symbols in ancient Egypt, the murals in the Alhambra, the manuscripts of Escher and the window lattice in ancient Chinese architecture profoundly reflects the basic operation principle of crystal group in shaping the skin form of architecture. Abundant and diverse architectural skin forms can be formed through the operation of symmetry group on basic graphic units. On the basis of clarifying the basic principle of crystal group action, the operation matrix of crystallographic symmetry group can be transformed into parameterized operation steps through programming language for visual operation, and then the skin form with high complexity and leap dimension can be generated by geometric algorithm, and the design method of building skin generation based on crystallographic group is constructed. In the selection of operation form, combined with the calculation of building performance and structure, the construction skin can be used in practical engineering is generated. Based on crystallographic group operation, the unifications of building skin and the classification simplification of components can meet the requirements of modular and unifications design in the process of building industrialization, and meet the requirements of current building industrialization and digitization. It has great research significance and value in the aspects of design and construction efficiency and material economic cost.
series cdrf
email
last changed 2024/05/29 14:02

_id ecaade2022_47
id ecaade2022_47
authors Marsillo, Laura, Suntorachai, Nawapan, Karthikeyan, Keshava Narayan, Voinova, Nataliya, Khairallah, Lea and Chronis, Angelos
year 2022
title Context Decoder - Measuring urban quality through artificial intelligence
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 237–246
doi https://doi.org/10.52842/conf.ecaade.2022.2.237
summary Understanding the quality of places during the early design process can improve design decision making and increase not only the chance of effective site development for the place and surroundings but also provide foresight to the mental, physical and environmental well-being of the future occupants. A context can be described differently depending on the designer's studies. However, in order to view the place holistically, various layers should be considered for a cross-disciplinary correlation. This paper proposes a prototypical tool to evaluate the quality of places using machine learning to help cluster and visualise design metrics according to the features provided. By selecting a location in a city, it offers other site contexts with similar characteristics and a similar level of complexity in relation to the surroundings. The tool was initially developed for Naples (Italy) as a case study city and incorporates key indicators related to connectivity of amenities, walkability, urban density, population density, outdoor thermal comfort, popular rate review and sentiment analysis from social media. With current open-source data, these indicators such as OpenStreetMap or social media sentiment can be collected with embedded geotags. These site-specific multilayers were evaluated under the metrics of 3 ranges i.e 400, 800 and 1,200-metre walking distance. This paper demonstrates the potential of using machine learning integrated with computational design tools to visualise the otherwise invisible data for users to interpret any context comprehensively in a holistic approach. Even though this tool is made for Naples, this tool can be extended to other cities across the world. As a result, the tool assists users in understanding not only site-specific location but also draws lines to other neighbourhoods within the city with a similar phenomenon of correlation between key performance indicators.
keywords Computational Design, Urban Analysis, Machine Learning, Computer Vision, Sentiment Analysis
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_200
id sigradi2022_200
authors Moreira, Eugenio; Alexandrino, Joao Victor Mota; Fernandes Muniz, Vinícius; Cardoso, Daniel
year 2022
title The use of visual programming interface for structuring a generic digital framework in a city information modeling workflow
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 675–686
summary One of the great challenges for the urban planner/designer is to establish strategies to deal with the increasing complexity of the contemporary city. Among the possibilities of dealing with it, the emergence of the so-called City Information Models (CIM) has presented itself as a promising direction. This paper seeks to contribute to the problem by describing a way to structure a CIM and proposing the creation of a computational application called Carcará, a plugin for a visual programming interface capable of reading and writing to a georeferenced database, allowing the creation of representations not only of the built space, but also manipulations of its semantic characteristics and calculation of a variety of metrics.
keywords City Information Model, urban planning, interface design
series SIGraDi
email
last changed 2023/05/16 16:56

_id ascaad2022_071
id ascaad2022_071
authors Ozgun, Feyza; Alacam, Sema
year 2022
title An Evaluation of Augmented Reality-Based User Interfaces in the Design Process
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 548-561
summary The aim of this study is to evaluate the user interfaces that reflect different interaction layers in the context of Augmented Reality technology. Depending on the physical characteristics of human interaction with the computer, these layers were examined under four sections: Graphical User Interface (GUI), Tangible User Interface (TUI), Natural User Interface (NUI) and Spatial User Interface (SUI). In this context, a proposed Augmented Reality application interface has been developed to bridge the physical and digital environment. The use of AR-based applications in the design process provided a basis for evaluating the user interface in these interaction layers. In future studies, the interface and experience offered by this application have the potential to be supported by more comprehensive functions and a collaborative working environment.
series ASCAAD
email
last changed 2024/02/16 13:29

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_302
id caadria2022_302
authors Raghu, Deepika, Markopoulou, Areti, Marengo, Mathilde, Neri, Iacopo, Chronis, Angelos and De Wolf, Catherine
year 2022
title Enabling Component Reuse from Existing Buildings through Machine Learning, Using Google Street View to Enhance Building Databases
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 577-586
doi https://doi.org/10.52842/conf.caadria.2022.2.577
summary Intense urbanization has led us to rethink construction and demolition practices on a global scale. There is an opportunity to respond to the climate crisis by moving towards a circular built environment. Such a paradigm shift can be achieved by critically examining the possibility of reusing components from existing buildings. This study investigates approaches and tools needed to analyze the existing building stock and methods to enable component reuse. Ocular observations were conducted in Google Street View to analyze two building-specific characteristics: (1) facade material and (2) reusable components (window, doors, and shutters) found on building facades in two cities: Barcelona and Zurich. Not all products are equally suitable for reuse and require an evaluation metric to understand which components can be reused effectively. Consequently, tailored reuse strategies that are defined by a priority order of waste prevention are put forth. Machine learning shows promising potential to visually collect building-specific characteristics that are relevant for component reuse. The data collected is used to create classification maps that can help define protocols and for urban planning. This research can upscale limited information in countries where available data about the existing building stock is insufficient.
keywords machine learning, component reuse, Google Street View, material banks, building databases, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2022_65
id sigradi2022_65
authors Roncoroni, Umberto
year 2022
title Programming complex 3D meshes. A generative approach based on shape grammars.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 335–346
summary This article summarizes the results of art based research developed thanks to a grant by the PUCP University of Lima in 2021-2022. An open source generative solution will be described, based on generative grammars, to create very complex and programmable 3D meshes. Analyzing hundreds of models generated with these algorithms, a solution was found based on the idea of “intelligent meshes”, which change their behavior during the modeling process. This is done using tags, or vertices identifiers, that, like genes, describe the topological characteristics of each vertex and its generative development during the process. Tags can be programmed interactively editing its data with tools provided by the interface or using generative grammars that allow an incredible variety of complex forms and stimulate the user creativity. The research findings also elucidate some important conceptual issues, like the importance of original technology development to defend cultural identity.
keywords Computational creativity, Cultural identity, Generative grammars
series SIGraDi
email
last changed 2023/05/16 16:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_988515 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002