CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 660

_id ecaade2022_175
id ecaade2022_175
authors Di Carlo, Raffaele, Mittal, Divyae and Vesely, Ondrej
year 2022
title Generating 3D Building Volumes for a Given Urban Context using Pix2Pix GAN
doi https://doi.org/10.52842/conf.ecaade.2022.2.287
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 287–295
summary Our ability to delegate the most intellectually demanding tasks to machines improves with each passing day. Even in the fields of architecture and design, which were previously thought to be exclusive domain of human creativity and flare, we are moving the first steps towards developing models that can capture the patterns, invisible to the naked eye, embedded in the creative process. These patterns reflect ideas and traditions, imprinted in the collective mind over the course of history, that can be improved upon or serve as a cautionary tale for the new generation of designers in their work of designing an equitable, more inclusive future. Generative Adversarial Networks (GANs) give us the opportunity to turn style and design into learnable features that can be used to automatically generate blueprints and layouts. In this study, we attempt to apply this technology to urban design and to the task of generating a building footprint and volume that fits within the surrounding built environment. We do so by developing a Pix2Pix model composed of a ResNet-6 generator and a Patch discriminator, applying it to satellite views of neighborhoods from across the Netherlands, and then turning the resulting 2D generated building footprint into a reusable 3D model. The model is trained using the national cadastral data and TU Delft 3D BAG dataset. The results show that it is possible to predict a building shape compatible in style and height with the surroundings. Although the model can be used for different applications, we use it as an evaluation tool to compare the design alternatives fitting the desired contextual patterns.
keywords Generative Adversarial Networks, Urban Design, Pix2Pix, Raster Vectorization, 3D Rendering
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_156
id sigradi2022_156
authors Dornelas, Wallace; Martinez, Andressa
year 2022
title Towards a Parametric Variation of Floor Plans: a Preliminary Approach for Vertical Residential Buildings
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 151–162
summary In the context of the housing demands that respond to several family profiles, allied with the potential of the algorithmic approaches to Architecture, this paper aims to describe an exploratory process of possible solutions toward a generative system of housing distribution in vertical multifamily buildings. As a method, this work presents a parametric design process of a multifamily building, simulating a variety of shape solutions for apartment buildings, in a Grasshopper definition. The work also discusses the data transmission between the parametric modeling using Grasshopper in the Rhinoceros interface and the connection of the final design to Graphisoft’s Archicad BIM-based software. As a result, the parametric model allows several design solutions for several building shapes and contexts. For this study, to fully explore the design possibilities, we applied the method in the context of a Brazilian metropolitan city.
keywords Generative design, Visual algorithmic design, Parametric architecture, Housing
series SIGraDi
email
last changed 2023/05/16 16:55

_id caadria2022_145
id caadria2022_145
authors Duering, Serjoscha, Fink, Theresa, Chronis, Angelos and Konig, Reinhard
year 2022
title Environmental Performance Assessment - The Optimisation of High-Rises in Vienna
doi https://doi.org/10.52842/conf.caadria.2022.1.545
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 545-554
summary Our cities are facing different kinds of challenges - in parallel to the urban transformation and densification, climate targets and objectives of decision-makers are on the daily agenda of planning. Therefore, the planning of new neighbourhoods and buildings in high-density areas is complex in many ways. It requires intelligent processes that automate specific aspects of planning and thus enable impact-oriented planning in the early phases. The impacts on environment, economy and society have to be considered for a sustainable planning result in order to make responsible decisions. The objective of this paper is to explore pathways towards a framework for the environmental performance assessment and the optimisation of high-rise buildings with a particular focus on processing large amounts of data in order to derive actionable insights. A development area in the urban centre of Vienna serves as case study to exemplify the potential of automated model generation and applying ML algorithm to accelerate simulation time and extend the design space of possible solutions. As a result, the generated designs are screened on the basis of their performance using a Design Space Exploration approach. The potential for optimisation is evaluated in terms of their environmental impact on the immediate environment.
keywords simulation, prediction and evaluation, machine learning, computational modelling, digital design, high-rises, SGD 11, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_176
id ecaade2022_176
authors Kotov, Anatolii, Starke, Rolf and Vukorep, Ilija
year 2022
title Spatial Agent-based Architecture Design Simulation Systems
doi https://doi.org/10.52842/conf.ecaade.2022.2.105
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 105–112
summary This paper presents case studies and analysis of agent-based reinforcement learning (RL) systems towards practical applications for specific architecture/engineering tasks using Unity 3D-based simulation methods. Finding and implementing sufficient abstraction for architecture and engineering problems to be solved by agent-based systems requires broad architectural knowledge and the ability to break down complex problems. Modern artificial intelligence (AI) and machine learning (ML) systems based on artificial neural networks can solve complex problems in different domains such as computer vision, language processing, and predictive maintenance. The paper will give a theoretical overview, such as more theoretical abstractions like zero-sum games, and a comparison of presented games. The application section describes a possible categorization of practical usages. From more general applications to more narrowed ones, we explore current possibilities of RL application in the field of relatable problems. We use the Unity 3D engine as the basis of a robust simulation environment.
keywords AI Aided Architecture, Reinforcement Learning, Agent Simulation
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id sigradi2022_253
id sigradi2022_253
authors Sanatani, Rohit Priyadarshi; Nagakura, Takehiko; Tsai, Daniel
year 2022
title The Tourist’s Image of the City: A comparative analysis of visual features and textual themes of interest across three metropolises
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 89–100
summary Tourist attractions play a major role in shaping ‘mental images’ of cities. The growing availability of urban big-data in recent years has opened up novel lines of inquiry into the nuances of urban imageability and sentiment. Drawing upon crowdsourced hybrid data in the form of both textual descriptions as well as photographs for 750 tourist attractions across Boston, Singapore and Sydney, this work compares the predominant themes of discussion and visual features of interest that shape tourist sentiment towards these cities. The study collects over 3500 user reviews and uses Latent Dirichlet Allocation (LDA) for the extraction of high-level topics of discussion. Object detection is also run on over 6000 photographs, and unsupervised clustering is carried out on extracted features to identify clusters of visual elements which capture tourist attention. The findings reinforce the popular identity of Boston as a city steeped in history, while strong perceptions of nature and greenery emerge from Singapore. Tourist interest in Sydney is dominated by specific anchors such as the Sydney Harbor Bridge.
keywords Data Analytics, Urban Tourism, Topic Modeling, Sentiment Analysis, Unsupervised Clustering, Big Data
series SIGraDi
email
last changed 2023/05/16 16:55

_id sigradi2022_279
id sigradi2022_279
authors Torreblanca-Díaz, David A.
year 2022
title Biodigital Jewelry Through Parametric Design and Additive Fabrication Technologies
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 1237–1248
summary Traditional jewelry is the result of knowledge that have been inherited from generation to generation, a traditional activity focused on the skills and manual dexterity of the artisan. In recent decades, a new paradigm for jewelry has emerged thanks to the integration of parametric design and digital additive fabrication technologies. A design project was proposed, aimed to create a series of jewels connecting nature, emotions, and digital technologies. The following methodological sequence was carried out (1) Selection of referents from nature (2) Design concept (3) Parameterized morphological synthesis (4) Morphological explorations (5) Detailed design (6) Materialization through additive fabrication technologies (7) User testing and emotional evaluation (8) Conclusions and improvement proposal. People perceived that the proposals were based on nature, there was a tendency towards positive emotions, such as fascination, desire, pride and hope. Finally, the methods used can be used in other design projects.
keywords Bio-inspired design, Biophilic design, Parametric design, Digital fabrication technologies, Additive fabrication technologies
series SIGraDi
email
last changed 2023/05/16 16:57

_id ecaade2022_151
id ecaade2022_151
authors Turhan, Gozde Damla, Afsar, Secil, Ozel, Berfin, Doyuran, Aslihan, Varinlioglu, Guzden and Bengisu, Murat
year 2022
title 3D Printing with Bacterial Cellulose-Based Bioactive Composites for Design Applications
doi https://doi.org/10.52842/conf.ecaade.2022.1.077
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 77–84
summary The bacterial cellulose (BC) biofilms are explored in design applications as replacements to petroleum-based materials in order to overcome the irreversible effects of the Anthropocene. Unlike biomaterials, designers as mediators could collaborate with bioactive polymers as a form of wetware to manufacture living design products with the aid of novel developments in biology and engineering. Past and ongoing experiments in the literature show that BC has a strong nanofibril structure that provides adhesion for attachment to plant cellulose-based networks and it could grow on the surfaces of the desired geometry thanks to its inherited, yet, controllable bio-intelligence. This research explores BC-based bioactive composites as wetware within the context of digital fabrication in which the methodology involves distinct, yet integrated, three main stages: Digital design and G-code generation (software stage); BC cultivation and printable bioactive composite formulation (wetware stage); digital fabrication with a customized 3D printer (hardware stage). The results have shown that the interaction of BC and plant- based cellulose fibers of jute yarns has enhanced the structural load-bearing capacity of the form against compressive forces, while pure BC is known only by its tensile strength. Since the outcomes were fabricated with the use of a bioactive material, the degradation process also adds a fourth dimension: Time, by which the research findings could further establish a bio-upcycling process of wastes towards biosynthesis of valuable products. Moreover, developing a BC-based bioactive filament indicates potentially a feasible next step in the evolution of multiscale perspectives on the growth of habitable living structures that could reinforce the interaction between nature and architecture through collaboration with software, hardware, and wetware in innovative and sustainable ways.
keywords Bacterial Cellulose, 3D Printing, Digital Fabrication, Bio-Active Composite
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_47
id caadria2022_47
authors An, Yudi
year 2022
title Impact of Covid-19 on Associations between Land Use and Bike-Sharing Usage
doi https://doi.org/10.52842/conf.caadria.2022.1.605
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 605-614
summary Bike-sharing as a human-centred, zero-emission, sustainable, alternative, and easily accessible transport mode has been implemented globally and consistently contributing to communities and the environment by alleviating consumption of natural sources, traffic congestion, and air pollution, which is considered a solution for future cities. The appearance of Covid-19 significantly impacts public transportation modes, including the bike-sharing system. The intention of this study was to investigate the spatiotemporal impact of the Covid-19 pandemic on associations between urban factors and bike-sharing usage in Los Angeles, United States, by analysing a sizeable actual trip dataset and employing geographically weighted regression (GWR) models. GWR was conducted for examining the varying spatial association between bike infrastructure, public transport, and urban land use factors, and bike-sharing trip volume. The results indicated that bike-sharing usage significantly decreased during the pandemic and essential service as restaurant was found consistently and positively associated with bike-sharing use. GWR provided clear spatial patterns of bike usage based on urban land use and big user databases. The outcomes of this study could inspire policymakers and shared mobility operators to support these safe, sustainable transport alters (such as rebalancing bike stations), help city resilience, and shape a sustainable future of mobility in the post-Covid-19 era.
keywords Bike-Sharing, Covid-19, Land Use, Geographically Weighted Regression, Big Data, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id cdrf2022_199
id cdrf2022_199
authors Jingming Li
year 2022
title Using Text Understanding to Create Formatted Semantic Web from BIM
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_17
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary The application of BIM in the building life cycle needs to be continuous. The information collected and accumulated in the early stages should flow to the subsequent phases. However, BIM applications currently focus on collision inspection, compliance inspection, and engineering calculation, few models can be successively used in the following stages. Remodeling is required in the operation and maintenance period, resulting in waste. Meanwhile, some of the information accumulated by BIM might be frequently used in the operation and maintenance stage, while some data are relatively rarely used. The semantic web can help manage building information at all stages. But the generation of a semantic web is mostly manually completed. It is necessary to standardize the repeated semantic description in the model and convert BIM into a standard semantic model for information indexing, reducing the resource consumption of model loading and optimizing the efficiency of the operation and maintenance system. When the existing research transforms from BIM to the semantic web, there will be a lack of information and descriptions of the ownership relationship between entities due to the limitation of formats. To realize the standard transformation from BIM to the semantic web, this work proposes a method of using Natural Language Processing (NLP) to understand the text and infer the relationship between entities according to the knowledge map. First, the entities are extracted from BIM, such as air conditioning unit, electric lamp, fan, etc., if the name of the extracted entity is irregular, the names are translated with the help of NLP and Ontology (such as brick or haystack) to obtain the standard definition. By comparing the complete knowledge graph (such as the knowledge graph of the air conditioning system), the relationships can be deduced, and then a standardized semantic model can be generated.
series cdrf
email
last changed 2024/05/29 14:02

_id ijac202321201
id ijac202321201
authors Steinfeld, Kyle
year 2023
title Clever little tricks: A socio-technical history of text-to-image generative models
source International Journal of Architectural Computing 2023, Vol. 21 - no. 2, 211–241
summary The emergence of text-to-image generative models (e.g., Midjourney, DALL-E 2, Stable Diffusion) in the summer of 2022 impacted architectural visual culture suddenly, severely, and seemingly out of nowhere. To contextualize this phenomenon, this text offers a socio-technical history of text-to-image generative systems. Three moments in time, or “scenes,” are presented here: the first at the advent of AI in the middle of the last century; the second at the “reawakening” of a specific approach to machine learning at the turn of this century; the third that documents a rapid sequence of innovations, dubbed “clever little tricks,” that occurred across just 18 months. This final scene is the crux, and represents the first formal documentation of the recent history of a specific set of informal innovations. These innovations were produced by non-affiliated researchers and communities of creative contributors, and directly led to the technologies that so compellingly captured the architectural imagination in the summer of 2022. Across these scenes, we examine the technologies, application domains, infrastructures, social contexts, and practices that drive technical research and shape creative practice in this space.
keywords Machine learning, text-to-image, socio-technical study, generative AI
series journal
last changed 2024/04/17 14:30

_id sigradi2022_274
id sigradi2022_274
authors Diacodimitri, Alekos; Rebecchini, Federico
year 2022
title Drawing with bare hands. A hand-gesture based drawing experience with motion sensors.
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 969–980
summary One of the features that makes analog drawing so fascinating is its manual component. The path of a graphite line on the sheet, the different pressure of the stroke, the texture described by an entropic movement, the unexpected residues of dirt, each of these things virtually refers to the intervention of a hand. This research unfolds around the idea of using the movement and gestures of the hands as a basis for the generation of forms for architectural design. Not three-dimensional models, but flat shapes, two-dimensional digital drawings generated by the author's gestures. Through a Leap Motion sensor and a digital drawing program, all the various forms of freehand drawing were explored, finding an interesting result in the field of free shape generation linked to hand gestures. The result of this experience is a different way of seeing gestures as a generative tool of architectural forms, to be used into architectural design process.
keywords Media art, Digital drawing, Shape generation, Gesture, Motion sensors
series SIGraDi
email
last changed 2023/05/16 16:57

_id caadria2022_140
id caadria2022_140
authors Huang, Shuyi and Zheng, Hao
year 2022
title Morphological Regeneration of the Industrial Waterfront Based on Machine Learning
doi https://doi.org/10.52842/conf.caadria.2022.1.475
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 475-484
summary The regeneration of the industrial waterfront is a global issue, and its significance lies in transforming the waterfront brownfield into an eco-friendly, hospitable, and vibrant urban space. However, the industrial waterfront naturally has comparatively unmanageable morphological features, including linear shape, irregular waterfront boundary, and separation with urban networks. Therefore, how to subdivide the vacant land and determine the land-use type for each subdivision becomes a challenging problem. Accordingly, this study proposes an application of machine learning models. It allows the generation of morphological elements of the vacant industrial waterfront by comparing the before-and-after scenarios of successful regeneration projects. The data collected from New York City is used as a showcase of this method.
keywords machine learning, urban morphology, industrial waterfront regeneration, sustainable cities, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_148
id caadria2022_148
authors Khajehee, Arastoo, Yabe, Taisei, Lu, Xuanyu, Liu, Jia and Ikeda, Yasushi
year 2022
title Development of an Affordable On-Site Wood Craft System: Interactive Fabrication via Digital Tools
doi https://doi.org/10.52842/conf.caadria.2022.2.031
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 31-40
summary This research aims to develop a craft system that simplifies the transition between design and fabrication. One of the main purposes of this system is to allow non-professionals to engage in craft with the aid of affordable digital fabrication tools. By removing the technical hurdles that prevent beginners from engaging in digital fabrication, the system aims to enable those who are interested in making things as a hobby or DIY projects to enjoy digital craft. The developed craft system provides a comprehensive workflow, starting from the initial shape to the final CNC milling machine G-Code generation. It is developed through Object-Oriented Programming, resulting in an interactive system that provides information about the fabricability of the final shelf structure to user/designer. The real-time design-to-fabrication aspect allows for some degree of simultaneous design changes, making the craft experience more center864108000enjoyable. In line with the UN Sustainable Development Goals, this research is an attempt to provide more opportunities for individuals to get into digital fabrication, enabling them to acquire skills within the rapidly growing industry. Furthermore, as demonstrated by other digital fabrication tools like 3D printers, DIY builds can potentially be economically beneficial for the users.
keywords Digital Fabrication, Real-Time Design to Fabrication, Affordable On-Site Craft, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ascaad2022_047
id ascaad2022_047
authors Tu, Han; Yang, Chunfeng
year 2022
title Mindful Space in Sentences: A Dataset of Virtual Emotions for Natural Language Classification
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 713-730
summary Spatial emotions have played a critical role in visual-spatial environmental assessment, which can be assessed using bio-sensors and language description. However, information on virtual spatial emotion assessment with objective emotion labels and natural language processing (NLP) is insufficient in literature. Thus, designers’ ability to assess spatial design quantitatively and cost effectively is limited before the design is finalized. This research measures the emotions expressed using electroencephalograms (EEGs) and descriptions in virtual reality (VR) spaces with different parameters. First, 26 subjects experienced 10 designed virtual spaces with a VR headset (Quest 2 device) corresponding to the different space parameters of shape, height, width, and length. Simultaneously, the EEG measured the emotions of the subjects using four electrodes and the five brain waves. Second, two labels – calm and active – were produced using EEGs to describe these virtual reality spaces. Last, this labeled emotion dataset compared the differences among the virtual spaces, human feelings, and the language description of the participants in the VR spatial experience. Experimental results show that the parameter changes of VR spaces can arouse significant fluctuations in the five brain waves. The EEG brain wave signals, in turn, can label the virtual rooms with calm and active emotions. Specifically, in terms of VR spaces and emotions, the experiments find that more relative spatial height results in less active emotions, while round spaces arouse calmness in the human brain waves. Moreover, the precise connection among VR spaces, brain waves in emotion, and languages still needs further research. This research attempts to offer a useful emotion measurement tool in virtual architectural design and description using EEGs. This research identifies potentials for future applications combining physiological metrics and AI methods, i.e., machine learning for synthetic design generation and evaluation.
series ASCAAD
email
last changed 2024/02/16 13:29

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id architectural_intelligence2022_6
id architectural_intelligence2022_6
authors Achim Menges, Fabian Kannenberg & Christoph Zechmeister
year 2022
title Computational co-design of fibrous architecture
doi https://doi.org/https://doi.org/10.1007/s44223-022-00004-x
source Architectural Intelligence Journal
summary Fibrous architecture constitutes an alternative approach to conventional building systems and established construction methods. It shows the potential to converge architectural concerns such as spatial expression and structural elegance, with urgently required resource effectiveness and material efficiency, in a genuinely computational approach. Fundamental characteristics of fibre composite are shared with fibre structures in the natural world, enabling the transfer of design principles and providing a vast repertoire of inspiration. Robotic fabrication based on coreless filament winding, a technique to deposit resin impregnated fibre filaments with only minimal formwork, as well as integrative computational design methods are imperative to the development of complex fibrous building systems. Two projects, the BUGA Fibre Pavilion as an example for long-span structures, and Maison Fibre as an example of multi-storey architecture, showcase the application of those techniques in an architectural context and highlight areas of further research opportunities. The highly interrelated aesthetic, structural and fabrication characteristics of fibre nets are difficult to understand and go beyond a designer’s comprehension and intuition. An AI powered, self-learning agent system aims to extend and thoroughly explore the design space of fibre structures to unlock the full design potential coreless filament winding offers. In order to ensure feedback between all relevant design and performance criteria and enable interdisciplinary convergence, these novel design methods are embedded in a larger co-design framework. It formalizes the interaction of involved interdisciplinary domains and allows for interactive collaboration based on a central data model, serving as a base for design optimisation and exploration. To further advance research on fibre composites in architecture, bio-based materials are considered, continuing the journey of discovery of fibrous architecture to fundamentally rethinking design and construction towards a novel, computational material culture in architecture.
series Architectural Intelligence
email
last changed 2025/01/09 15:00

_id caadria2022_80
id caadria2022_80
authors Anifowose, Hassan, Yan, Wei and Dixit, Manish
year 2022
title Interactive Virtual Construction ‚ A Case Study of Building Component Assembly towards the adoption of BIM and VR in Business and Training
doi https://doi.org/10.52842/conf.caadria.2022.2.547
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 547-556
summary Present day building product manufacturers face difficulties in scaling businesses. Key decisions surrounding technology adoption are typically measured against feasibility of use and long-term profit. Building Information Modelling (BIM) and Virtual Reality (VR) provide the potential for teaching building product assembly to employees and construction contractors. This eliminates the need for deploying training personnel to job sites, reduces manufacturing carbon footprint and wastes in product samples required for training. VR content development is difficult and performance within VR applications must be near reality in order to improve adoption of such technology through training. This exploratory study investigates important factors that enhance adoption in business cases through training. We developed an innovative BIM+VR prototype for SwiftWall; a temporary wall manufacturing company, highlighting rigorous processes for in-house BIM anatomy and VR development. This paper provides a step-by-step approach to replicate the prototype. The prototype was tested in several demonstration sessions. The approximate time to install 40 linear feet of SwiftWall is 30-minutes at the simplest level. This timing is equivalent to 28 linear feet installation in 21-minutes achieved with the BIM+VR prototype demonstration. The matching timing results show a significant potential for adoption in business, improved sustainability and employee training from a time and cost-efficient standpoint. Concerns and key issues from development to deployment are discussed in detail. The BIM+VR virtual construction prototype provides adoption potential for training remote partners thereby increasing possibilities of SwiftWall scaling to distributors and product carriers across a larger geographic region.
keywords BIM, Virtual Reality, Unity, Training, Game Design, Construction Assemblage, Construction Material, Virtual Construction, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2022_85
id ecaade2022_85
authors Ataman, Cem, Herthogs, Pieter, Tuncer, Bige and Perrault, Simon
year 2022
title Multi-Criteria Decision Making in Digital Participation - A framework to evaluate participation in urban design processes
doi https://doi.org/10.52842/conf.ecaade.2022.1.401
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 401–410
summary Data-driven urban design processes consist of iterative actions of many stakeholders, which require digital participatory approaches for collecting data from a high number of participants to make informed decisions. It is important to evaluate such processes to justify the necessary costs and efforts while continuously improving digital participation. Nevertheless, such evaluation remains a challenge due to the involvement of different stakeholders including participants, designers, and policymakers in decision-making processes, and the lack of a systematic method to generalize participation outputs that are mostly situated and context based. By addressing this challenge, this paper introduces a Multi-Criteria Decision Analysis (MCDA) based framework to measure the effectiveness and quality of digital participation systematically and quantitatively. To achieve such evaluation, we conducted a digital participation experiment and investigated such processes with the help of participants, designers, and policymakers from Singapore and Hamburg. By formulating this framework, we aim to reveal perspectives of different stakeholders towards digital participation and enable the evaluation and comparison of digital participation processes based on the introduced digital participation criteria.
keywords Data-Driven Urban Design, Digital Participation, Stakeholder Involvement, Multi-Criteria Decision Analysis (MCDA), Participation Quantification
series eCAADe
email
last changed 2024/04/22 07:10

_id sigradi2022_211
id sigradi2022_211
authors Baltazar, Ana Paula; Bartholo, Beatriz; Moritani, Gustavo Jun; Paiva, Luísa; Cabral Filho, José
year 2022
title Technological appropriations for socio-spatial transformation in Sao Gonçalo do Baçao
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 847–856
summary Based on a university teaching-research-extension experience in Sao Gonçalo do Baçao (Minas Gerais, Brazil), this article discusses the use of digital technology as a way to expand the virtual, understood as an event in latent state, as a process of problematization and not of problem solving. Three digital interfaces developed with the common goal of encouraging questioning and the exercise of autonomy from different approaches and themes are presented. The interfaces seek to articulate the Flusserian idea of 'responsibility', regarded as the act of responding to others in a way that promotes an opening for people to continue the design process dialogically. In short, the interfaces indicate possibilities provided by digital technologies and exemplify ways in which they might drive processes towards social-spatial transformation.
keywords Interactions, Technological appropriations, Sintegrity, Socio-spatial transformation, Sao Gonçalo do Baçao
series SIGraDi
email
last changed 2023/05/16 16:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_176889 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002