CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 640

_id caadria2022_59
id caadria2022_59
authors Banihashemi, Farzan, Reitberger, Roland and Lang, Werner
year 2022
title Investigating Urban Heat Island and Vegetation Effects Under the Influence of Climate Change in Early Design Stages
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 679-688
doi https://doi.org/10.52842/conf.caadria.2022.2.679
summary Different criteria need to be considered for optimal strategies in the early design stages of urban developments. Under the influence of climate change, the urban heat island effect (UHI) is a phenomenon that gains importance in the early design stages. Here, different parameters, for instance, vegetation ratio in the city district and building density, play a significant role in the UHI effect. These parameters need to be quantified through different simulation tools for optimal climate adaptation and mitigation measures on the urban district scale. However, not all parameters and their influence are clear to the decision-makers and actors in the early design stages. Hence, we propose a Monte Carlo based sensitivity analysis (SA) and uncertainty analysis (UA) to show the significance of different parameters and quantify them. The SA aims to identify the major influencing parameters, whereas the UA quantifies the effect on the energy performance and indoor thermal comfort of occupants. The workflow is integrated into a collaborative design platform and applied in a case study to support decision-makers in the early design stages for new developments, densification, or refurbishment scenarios.
keywords Monte Carlo Simulation, Sensitivity Analysis, Uncertainty Analysis, Building Energy Simulation, SDG 13, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_393
id caadria2022_393
authors Yu, Daniel, Irger, Matthias, Tohidi, Alex and Haeusler, Matthias Hank
year 2022
title Designing Out Heat ‚ Developing a Computer-Aided Street Layout Tool to Address Urban Heat in Existing Streets and Suburbs
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 739-748
doi https://doi.org/10.52842/conf.caadria.2022.2.739
summary As cities are getting hotter, the urban heat islands effect will become an increased concern for cities. While urban heat migration strategies are well researched and understood, some strategies of implementing urban heat mitigation focus on private land - thus depend on the owner's uptake. This research shifts mitigation strategies to the public land where governments have legislative control over the corridor between privately owned cadastral ‚ the street corridor. This paper asks the question how a computational tool could assist councils in redesigning streets to mitigate urban heat. Literature review confirmed a direct relationship between the magnitude of urban heat and street layout, vegetation and materials used, position of street to sun and wind direction - yet no tool that assists a designer exists - the focus of the research. We present first findings and the iterative development of our street design tool. Via our tool one can alter variables such as vegetation type, materials or street configuration until urban heat mitigation is optimized. This is a significant step towards cooling our cities as designers now have a process that translates expert knowledge on urban heat into a tool that lets them design as well as evaluate their design.
keywords Urban heat island, landscape architecture, urban design, traffic engineering, computational tools, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_302
id caadria2022_302
authors Raghu, Deepika, Markopoulou, Areti, Marengo, Mathilde, Neri, Iacopo, Chronis, Angelos and De Wolf, Catherine
year 2022
title Enabling Component Reuse from Existing Buildings through Machine Learning, Using Google Street View to Enhance Building Databases
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 577-586
doi https://doi.org/10.52842/conf.caadria.2022.2.577
summary Intense urbanization has led us to rethink construction and demolition practices on a global scale. There is an opportunity to respond to the climate crisis by moving towards a circular built environment. Such a paradigm shift can be achieved by critically examining the possibility of reusing components from existing buildings. This study investigates approaches and tools needed to analyze the existing building stock and methods to enable component reuse. Ocular observations were conducted in Google Street View to analyze two building-specific characteristics: (1) facade material and (2) reusable components (window, doors, and shutters) found on building facades in two cities: Barcelona and Zurich. Not all products are equally suitable for reuse and require an evaluation metric to understand which components can be reused effectively. Consequently, tailored reuse strategies that are defined by a priority order of waste prevention are put forth. Machine learning shows promising potential to visually collect building-specific characteristics that are relevant for component reuse. The data collected is used to create classification maps that can help define protocols and for urban planning. This research can upscale limited information in countries where available data about the existing building stock is insufficient.
keywords machine learning, component reuse, Google Street View, material banks, building databases, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_427
id caadria2022_427
authors Ding, Xinyue, Guo, Xiangmin, Lo, Tian Tian and Wang, Ke
year 2022
title The Spatial Environment Affects Human Emotion Perception-Using Physiological Signal Modes
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 425-434
doi https://doi.org/10.52842/conf.caadria.2022.2.425
summary In the past, spatial design was mainly from the perspective of designers. With the increasing demand for quality spaces, contemporary architecture has gradually shifted from focusing on form creation to human well-being, once again advocating the concept of "human-centered" spatial design. Exploring how the spatial environment affects human emotions and health is conducive to quantifying the emotional perception characteristics of space and promoting the improvement of human quality of life and sustainable survival. At the same time, the development of contemporary technology and neuroscience has promoted the study of the impact of spatial environment on human emotion perception. This paper summarizes the research on the impact of the spatial environment on human emotion perception in recent years. First, 28 relevant studies were screened using the PRISMA framework. Then a set of research processes applicable to this study is proposed. Next, the physiological signals currently used to study the effects of the spatial environment on human emotions are summarized and analyzed, including electroencephalography (EEG), skin response (GSR), pulse (PR), and four other signals. The architectural features studied in the related literature are mainly building structural features, building spatial geometric features, and building spatial functional attributes. The study of urban space is divided into different parts, such as urban environment characteristics and urban wayfinding behavior. Finally, we point out the shortcomings and perspectives of studies related to the influence of spatial environment on human emotion perception.
keywords Architectural space environment, urban space, human emotional feelings, Physiological signals, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id sigradi2023_219
id sigradi2023_219
authors Fiuza, Rebeca, Cardoso, Daniel, Moreira, Eugenio, Colares, Teresa, Freitas, Vitória and Paiva, Ricardo
year 2023
title Correlations between urban and demographic data and COVID-19 data: a case study in Fortaleza, Brazil
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 1667–1678
summary COVID-19 was a sanitary crisis of international impact. However, its effects weren’t experienced equally. In Fortaleza, epidemiological reports (2021;2022) point to different infection patterns between high Human Development Index (HDI) and low HDI neighborhoods, which surfaced the hypothesis that certain territories’ characteristics could correlate to COVID-19 data. This article describes a phase of a three-phase research, whose objective is to identify correlations between urban and demographic (UD) data to COVID-19 data. To this, a literature review was done to select seven UD variables and four COVID-19 ones, then, Spearman’s correlation was applied in four pandemic time frames (TF). Results show that literacy rates, monthly income and energy have either low or moderate positive correlations with contamination rates in most TF. However, they’ve shown low or moderate correlations with lethality rates in three TF. Population density showed low positive correlations to either lethality rates or total number of deaths in three TF.
keywords COVID-19, Urban Data, Demographic Data, Spearman's Coefficient Correlation, Public Health
series SIGraDi
email
last changed 2024/03/08 14:09

_id caadria2022_312
id caadria2022_312
authors Forster, Nick, Schubert, Gerhard and Petzold, Frank
year 2022
title Rebugging the Smart City. Design Explorations of Digital Urban Infrastructure
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 635-644
doi https://doi.org/10.52842/conf.caadria.2022.1.635
summary Smart Cities are presented as a straightforward solution to diverse urban problems. On a closer look, however, the discourse on ‚Smart Cities‚ seems wicked in various ways: vaguely defined, speculative, and fragmented into incommensurable positions. Focussing on this ‚wickedness,‚ we explore the potential of design approaches to pervade the obscurities and discursive segregations around digital urban infrastructure. Insights from critical design theory lead us to an engagement with digital design not only as validation and enhancement of Smart City projects but as contingent and political exploration. Design becomes an investigation and remaking of what a ‚Smart City‚ means in a concrete context. Hence, this approach allows an intersection of social and technical, affirmative and critical perspectives. We explore this approach through an experimental workshop. Hence, we discuss the unfolding of two design engagements: the reframing of ‚Smart Lighting‚ as cosmopolitical controversy and the hacking of pedestrian navigation as urban exploration. This approach shows a double potential: On the one hand, it makes digital design practices aware of their ambiguous and political effects. On the other, we scrutinise the possibility of sociotechnical design perspectives as a research approach towards ‚Smart City‚ projects and digital urban infrastructure.
keywords smart city, design theory, prototyping, digital infrastructure, urban studies, critical making, speculative design, SDG 9, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2024_365
id caadria2024_365
authors Lahtinen, Aaro, Gardner, Nicole, Ramos Jaime, Cristina and Yu, Kuai
year 2024
title Visualising Sydney's Urban Green: A Web Interface for Monitoring Vegetation Coverage between 1992 and 2022 using Google Earth Engine
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 2, pp. 515–524
doi https://doi.org/10.52842/conf.caadria.2024.2.515
summary With continued population growth and urban expansion, the severity of environmental concerns within cities is likely to increase without proper urban ecosystem monitoring and management. Despite this, limited efforts have been made to effectively communicate the ecological value of urban vegetation to Architecture, Engineering and Construction (AEC) professionals concerned with mitigating these effects and improving urban liveability. In response, this research project proposes a novel framework for identifying and conveying historical changes to vegetation coverage within the Greater Sydney area between 1992 and 2022. The cloud-based geo-spatial analysis platform, Google Earth Engine (GEE), was used to construct an accurate land cover classification of Landsat imagery, allowing the magnitude, spatial configuration, and period of vegetation loss to be promptly identified. The outcomes of this analysis are represented through an intuitive web platform that facilitates a thorough understanding of the complex relationships between anthropogenic activities and vegetation coverage. A key finding indicated that recent developments in the Blacktown area had directly contributed to heightened land surface temperature, suggesting a reformed approach to urban planning is required to address climatic concerns appropriately. The developed web interface provides a unique method for AEC professionals to assess the effectiveness of past planning strategies, encouraging a multi-disciplinary approach to urban ecosystem management.
keywords Urban Vegetation, Web Interface, Landsat Imagery, Land Cover Classification, Google Earth Engine
series CAADRIA
email
last changed 2024/11/17 22:05

_id ijac202220301
id ijac202220301
authors Martins, Iago Longue; Ana Paula Lyra
year 2022
title Development and application of an algorithmic-parametric tool to assess the contribution of urban forestry to mitigate floods
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 496–510
summary As an impact of climate change, water-related disasters, such as floods, are becoming more frequent. In this context, there is an increasing demand to improve the resiliency of urban settlements, using multiple approaches and techniques. This paper assesses one of those techniques, by developing an algorithmicparametric tool to quantify how urban forestry reduces flood impacts from rainfall runoff. The assessment was comprised by three main methodological steps: (#1) observing the scientific literature on “the sponge effect” observed in green infrastructures; (#2) developing an algorithmic-parametric tool using the Grasshopper application to estimate rainfall runoff, considering the influence of urban forestry design factors; and (#3) performing digital simulations with this parametric tool using a Rhinoceros-Grasshopper interface. Results indicate this method is effective in assessing the efficacy of green interventions to mitigate urban flood damage and also in foreseeing how different design strategies impact urban hydrological dynamics.
keywords parametric analysis, urban forestry, climate change, urban planning, water-resilient cities
series journal
last changed 2024/04/17 14:29

_id acadia22_506
id acadia22_506
authors Ozarisoy, Bertug; Altan, Hasim
year 2022
title Passive Cooling Strategies for Thriving in a Changing Climate
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 506-523.
summary This paper investigates the thermal performance of 288 flats in three different nationally representative collective housing archetypes in the southeastern Mediterranean island of Cyprus, where the climate is subtropical (Csa) and partly semi-arid (Bsh), as designated in the Köppen climate classification system. The participants’ experiences and thermal sensation votes were assessed to predict individual aspects of adaptive thermal comfort, and the relevance thereof on overheating, and in situ measurements—including indoor air temperatures, thermal imaging survey, recorded building-fabric-element heat fluxes, on-site environmental conditions monitoring, and review of household energy bills to accurately determine actual energy use—were collected
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ecaade2022_293
id ecaade2022_293
authors Sommer, Til, Wurzer, Gabriel and Lorenz, Wolfgang E.
year 2022
title NoMoTown - An agent-based model of transport mode choice
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, pp. 133–140
doi https://doi.org/10.52842/conf.ecaade.2022.2.133
summary In most cities, cars remain the dominant mode of transport. This is a huge problem not only because of obvious effects such as congestion and pollution, but also because it causes health issues for commuters themselves which lead to further costs for the community. In our work, we have developed an agent-based simulation which offers mitigation strategies and tries to propose realistic lines of action for transport modes to more sustainable modes. Our approach can import from GIS or (raster) maps, thus acting as a planning tool for urban planners and city administrators; we also included the possibility for generating theoretical / idealized cities, as a testbed and theoretical tool for instructing policy makers. Our goal is to find an equilibrium between individual freedom in transport choice, financial effort required for maintaining the overall transport system and the health of the whole population.
keywords Agent-Based Simulation, Urban Dynamics, Multimodal Transport, Sustainability
series eCAADe
email
last changed 2024/04/22 07:10

_id ascaad2022_102
id ascaad2022_102
authors Turki, Laila; Ben Saci, Abdelkader
year 2022
title Generative Design for a Sustainable Urban Morphology
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 434-449
summary The present work concerns the applications of generative design for sustainable urban fabric. This represents an iterative process that involves an algorithm for the generation of solar envelopes to satisfy solar and density constraints. We propose in this paper to explore a meta-universe of human-machine interaction. It aims to design urban forms that offer solar access. This being to minimize heating energy expenditure and provide solar well-being. We propose to study the impact of the solar strategy of building morphosis on energy exposure. It consists of determining the layout and shape of the constructions based on the shading cut-off time. This is a period of desirable solar access. We propose to define it as a balance between the solar irradiation received in winter and that received in summer. We rely on the concept of the solar envelope defined since the 1970s by Knowles and its many derivatives (Koubaa Turki & al., 2020). We propose a parametric model to generate solar envelopes at the scale of an urban block. The generative design makes it possible to create a digital model of the different density solutions by varying the solar access duration. The virtual environment created allows exploring urban morphologies resilient both to urban densification and better use of the context’s resources. The seasonal energy balance, between overexposure in summer and access to the sun in winter, allows reaching high energy and environmental efficiency of the buildings. We have developed an algorithm on Dynamo for the generation of the solar envelope by shading exchange. The program makes it possible to detect the boundaries of the parcels imported from Revit, establish the layout of the building, and generate the solar envelopes for each variation of the shading cut-off time. It also calculates the FAR1 and the FSI2 from the variation of the shading cut-off time for each parcel of the island. We compare the solutions generated according to the urban density coefficients and the solar access duration. Once the optimal solution has been determined, we export the results back into Revit environment to complete the BIM modelling for solar study. This article proposes a method for designing buildings and neighbourhoods in a virtual environment. The latter acts upstream of the design process and can be extended to the different phases of the building life cycle: detailed design, construction, and use.
series ASCAAD
email
last changed 2024/02/16 13:38

_id cdrf2022_209
id cdrf2022_209
authors Yecheng Zhang, Qimin Zhang, Yuxuan Zhao, Yunjie Deng, Feiyang Liu, Hao Zheng
year 2022
title Artificial Intelligence Prediction of Urban Spatial Risk Factors from an Epidemic Perspective
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_18
summary From the epidemiological perspective, previous research methods of COVID-19 are generally based on classical statistical analysis. As a result, spatial information is often not used effectively. This paper uses image-based neural networks to explore the relationship between urban spatial risk and the distribution of infected populations, and the design of urban facilities. We take the Spatio-temporal data of people infected with new coronary pneumonia before February 28 in Wuhan in 2020 as the research object. We use kriging spatial interpolation technology and core density estimation technology to establish the epidemic heat distribution on fine grid units. We further examine the distribution of nine main spatial risk factors, including agencies, hospitals, park squares, sports fields, banks, hotels, Etc., which are tested for the significant positive correlation with the heat distribution of the epidemic. The weights of the spatial risk factors are used for training Generative Adversarial Network models, which predict the heat distribution of the outbreak in a given area. According to the trained model, optimizing the relevant environment design in urban areas to control risk factors effectively prevents and manages the epidemic from dispersing. The input image of the machine learning model is a city plan converted by public infrastructures, and the output image is a map of urban spatial risk factors in the given area.
series cdrf
email
last changed 2024/05/29 14:02

_id cdrf2022_223
id cdrf2022_223
authors Zhiyi Dou, Waishan Qiu, Wenjing Li, Dan Luo
year 2022
title Evaluation Process of Urban Spatial Quality and Utility Trade-Off for Post-COVID Working Preferences
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_19
summary The formation of cities, and the relocation of workers to densely populated areas reflect a spatial equilibrium, in which the higher real consumption levels of urban areas are offset by lower non-monetary amenities [1]. However, as the society progress toward a post-COVID stage, the prevailing decentralized delivery systems and location-based services, the growing trend of working from home, with citizens’ shifting preference of de-appreciating densities and gathering, have not only changed the possible spatial distribution of opportunities, resources, consumption and amenities, but also transformed people’s preference regarding desirable urban spatial qualities, value of amenities, and working opportunities [2, 3].

This research presents a systematic method to evaluate the perceived trade-off between urban spatial qualities and urban utilities such as amenities, transportation, and monetary opportunities by urban residence in the post-COVID society. The outcome of the research will become a valid tool to drive and evaluate urban design strategies based on the potential self-organization of work-life patterns and social profiles in the designated neighbourhood.

To evaluate the subjective perception of the urban residence, the study started with a comparative survey by asking residence to compare two randomly selected urban contexts in a data base of 398 contexts sampled across Hong Kong and state their living preference under the presumption of following scenarios: 1. working from home; 2. working in city centre offices. Core information influencing the spatial equilibrium are provided in the comparable urban context such as street views, housing price, housing space, travel time to city centre, adjacency to public transport and amenities, etc. Each context is given a preference score calculated with Microsoft TrueSkill Bayesian ranking algorithm [4] based on the comparison survey of two scenarios.

The 398 contexts are further analysed via GIS and image processing, to be deconstructed into numerical values describing main features for each of the context that influence urban design strategies such as composition of spatial features, amenity allocation, adjacency to city centre and public transportations. Machine learning models are trained with the numerical values of urban features as input and two preference scores for the two working scenarios as the output. The correlation heat maps are used to identify main urban features and its p-value that influence residence’s preference under two working scenarios in post–COVID era. The same model could also be applied to inform the direction of urban design strategies to construct a sustainable community for each type of working population and validate the design strategies via predicting its competitiveness in attracting residence and developing target industries.

series cdrf
email
last changed 2024/05/29 14:02

_id acadia22_536
id acadia22_536
authors Tian, Hui; Yao, Jiali; Tu, Shimin
year 2022
title The Potential of Mitigating Urban Heat Island with Vacant Lands in Philadelphia
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 536-545.
summary Under the context of climate change, the urban heat island (UHI) is a challenging problem in Philadelphia as the number of days with extreme heat every year keeps increasing. Taking into account limited green space but a considerable amount of vacant lands in Philadelphia, we would test the cooling effect of greening vacant lands in UHI by exploring the quantitative relationship between land covers and Land Surface Temperature (LST) with novel machine learning technologies.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id acadia22_474
id acadia22_474
authors Zidek, Juliette; Aman, Laurin; Li, Xinran; Alhashemi, Jumaanah; Meibodi, Mania Aghaei
year 2022
title Integrative Green Building Envelope
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 474-485.
summary While conventional green wall systems are often materially inefficient due to a lack of integration with functional building envelope layers, this research investigates the potential of large-scale 3D printing with robotic pellet extrusion (RPE) to produce a novel integrative green building envelope system. The developed envelope system fosters the growth of a self-watering, diverse plant ecology to passively cool buildings, filter contaminants from polluted air, and attract diverse forms of wildlife. This paper presents the conceptualization, design, and prototypes of the Integrative Green Building Envelope (IGBE) system.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id ascaad2022_017
id ascaad2022_017
authors Belok, Fatima; Khalifa, Mostafa; El-Bastawissi, Ibtihal; Hanafi, Mohamad
year 2022
title Digital Framework to Optimize Visual Comfort using Kinetic Facades
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 392-414
summary Visual comfort is one of many aspects of human comfort that should be considered in architectural spaces. Visual comfort is an architectural necessity and could be achieved and optimized in spaces through controlling facades’ opening. This could be achieved by applying kinetic facades, which is one of the trends in the field of responsive architecture. However, the research’ s aim is optimizing visual comfort using kinetic facades in educational spaces. This optimization will improve the environmental quality of the educational space. In this research architects will achieve easily more effective kinetic facades to have better visual comfort by enhancing daylight quantity and quality using luminous environmental parameters’ measurement tool. In this research a series of scripts will be applied on various kinetic facades’ alternatives. These scripts will be based on a relation between different daylight and kinetic parameters. Thus, the outcome is to develop an Add-on, as a digital
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2022_233
id caadria2022_233
authors Dai, Sida, Kleiss, Michael, Alani, Mostafa and Pebryani, Nyoman
year 2022
title Reinforcement Learning-Based Generative Design Methodology for Kinetic Facade
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 151-160
doi https://doi.org/10.52842/conf.caadria.2022.1.151
summary This paper presents a reinforcement learning (RL) based design method for kinetic facades to optimize the movement direction of shading panels. Included with this research is a case study on the Westin Peachtree Plaza in Atlanta, USA to examine the effectiveness of the proposed design method in a real-life context. Optimization of building performance has been given increased attention due to the significant impact buildings have on energy consumption and carbon emissions. Further, building performance is closely related to the "Sustainable Cities and Communities‚ mentioned in SDG11. Results show that the novel design method improved the building performance by reducing solar radiation and glare and illustrate the potential of RL in tackling complex design problems in the architectural field.
keywords reinforcement learning, kinetic facade, generative design, design methodology, SDG 11
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22pr_82
id acadia22pr_82
authors Esquivel, Gabriel; Jaminet, Jean; Bugni, Shane
year 2022
title The Serlio Code - Beyond Classic Language
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 82-87.
summary This research project examined the illustrated expositions of Sebastiano Serlio through the lens of artificial intelligence. The intention of this project was to use Serlio’s illustrations to modulate their qualities and problematize their 2D to 3D translation beyond the rules of representation and orthographic projection. Three operative models were presented: columns, plans and facades, and porticoes—developed by augmenting and interpreting layered generative adversarial networks that drive an integrated parametric 3D process. These insights and investigations disclosed alternative theoretical connections between information processing and aesthetic communication as well as emerging modes of creative digital production.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id ecaade2022_275
id ecaade2022_275
authors Gan, Amelia Wen Jiun, Guida, George, Kim, Dongyun, Shah, Devashree, Youn, Hyejun and Seibold, Zach
year 2022
title Modulo Continuo - 5-axis ceramic additive manufacturing applications for evaporative cooling facades modules
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 47–55
doi https://doi.org/10.52842/conf.ecaade.2022.1.047
summary Recent developments in industrial robotics present an increasing degree of control in additive manufacturing, enabling customization of architectural building components at the scale of the individual unit. Combining the affordances of a 6-axis robotic arm, paste- based extrusion, and terracotta clay, Modulo Continuo presents methods for part-customization of evaporative cooling facade modules. The design of the facade modules is developed firstly at the scale of the tectonic unit - as a self-supporting, interlocking modular system of curved modules with an embedded water reservoir for evaporative cooling. Second, this is developed at the scale of the toolpath - in which the density of the infill geometry in the modules is calibrated based on principles of evaporative cooling. This research presents aesthetic and performative opportunities through an exploration of infill patterning and density of modules based on evaporative cooling requirements. To produce each curved module through additive manufacturing, curved CNC milled substrates are used to support the geometry while accommodating clay shrinkage. Furthermore, this paper presents novel digital workflows for the customization of a modular façade system and the generation of variable toolpaths for infill patterns. By developing additive manufacturing methodologies for part- customization, the research presents future opportunities for the digital fabrication of ceramic construction elements.
keywords Additive Manufacturing, Digital Fabrication, Evaporative Cooling, Ceramics
series eCAADe
email
last changed 2024/04/22 07:10

_id ijac202220102
id ijac202220102
authors Giesecke, Rena; Benjamin Dillenburger
year 2022
title Large-scale Robotic Fabrication of Polychromatic Relief Glass
source International Journal of Architectural Computing 2022, Vol. 20 - no. 1, pp. 18–30
summary This research investigates a new digital fabrication method for large-scale polychromatic glass elements. Glass elements with locally differentiated properties usually require manual labor or are limited to film applications of secondary materials that are incapable of producing material texture and relief in glass. To create mono- material glass elements for buildings with customized color, opacity, and relief present in the same glass element, this research investigates a novel robotic multi-channel printing process for industrial float glass. Mono-material polychromatic glasses do not require any additional material and can be fully recycled. This paper presents a design-to-production workflow for the construction scale within feasible cost. Investigations include kilning and material considerations, multi-channel tool and fabrication setup, tool path generation, process parameter calibration, and large-scale prototyping. The co-occurrence of locally varying opacities, colors, material textures, and relief within one glass element enabled by the presented robotic fabrication method could allow for novel optical and decorative features in facades and windows.
keywords Additive manufacturing, robotic fabrication, multi-color printing, large-scale, glass, float glass
series journal
last changed 2024/04/17 14:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_448127 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002